
Alignment of Organizational Security Policies
Theory and Practice

Trajče Dimkov

“Confidential information on almost 130,000 prisoners and dangerous criminals, which
was stored on an unencrypted computer memory stick, has been lost by the Home
Office, sparking yet another Government data crisis.”
 The Telegraph

“Soldier smuggled highly classified data out of his intelligence unit on a disc disguised
as a music CD [...] He is suspected of disclosing more than 150,000 diplomatic cables,
more than 90,000 intelligence reports on the war in Afghanistan and one video of a
military helicopter attack - all of it classified. “
 The New York Times

“The Stuxnet worm, designed to be delivered through a removable drive like a USB
stick [...] the worm was designed specifically to attack the Siemens-designed working
system of the Bushehr plant and appears to have infected the system via the laptops
and USB drives of Russian technicians who had been working there.”

 The Guardian

A
lignm

ent of O
rganizati

onal Security Policies Theory and Practice
 Trajče D

im
kov

Invitation
to the public defense

of my PhD thesis

Trajče Dimkov
tdimkov@utwente.nl

Alignment of
Organizational

Security Policies
Theory and Practice

Thursday
February 23, 2012.

Introductory talk
starts at 14:30.
Public defense
starts at 14:45.

Collegezaal 4,
Waaier Building,

University of Twente.

A reception
will be in the
same building

at 16:00.

Alignment of Organizational Security Policies
Theory and Practice

Trajce Dimkov

Composition of the Graduation Committee:

Prof. Dr. Ir. A.J. Mouthaan Universiteit Twente

Prof. Dr. P.H. Hartel Universiteit Twente

Prof. Dr. R.J. Wieringa Universiteit Twente

Prof. Dr. M. Junger Universiteit Twente

Prof. Dr. D. Gollmann Hamburg University of Technology

Dr. C.W. Probst Technical University of Denmark

Prof. Dr. E.R. Verheul Radboud Universiteit Nijmegen

This research is supported by the Sentinels program of the

Technology Foundation STW, applied science division of

NWO and the technology programme of the Ministry of

Economic Affairs under projects number TIT.7628.

CTIT Ph.D. Thesis Series No. 12-218

Centre for Telematics and Information Technology

P.O. Box 217, 7500 AE

Enschede, The Netherlands.

IPA Dissertation Series No. 2012-04

The research reported in this thesis has been carried out

under the auspices of IPA, the Dutch Research School

for Programming research and Algorithmics.

ISBN : 978-90-365-3331-7

ISSN : 1381-3617 (CTIT Ph.D.-thesis series No. 12-218)

DOI number : 10.3990/1.9789036533317

Official URL: http://dx.doi.org/10.3990/1.9789036533317

Typeset with LATEX. Cover photo: Dragan Siskov.

Copyright c© 2012 Trajce Dimkov, Enschede, The Netherlands.

All rights reserved. No part of this book may be reproduced or transmitted, in any form or by any

means, electronic or mechanical, including photocopying, microfilming, and recording, or by any

information storage or retrieval system, without the prior written permission of the author.

ALIGNMENT OF ORGANIZATIONAL SECURITY
POLICIES

THEORY AND PRACTICE

DISSERTATION

to obtain

the degree of doctor at the University of Twente,

on the authority of the rector magnificus,

prof. dr. H. Brinksma,

on account of the decision of the graduation committee,

to be publicly defended

on Thursday, 23rd of February 2012 at 14:45

by

Trajce Dimkov

born on 20th of June 1983,

in Kavadarci, Macedonia

The dissertation is approved by:

Prof. Dr. P.H. Hartel (promotor)

Abstract

To address information security threats, an organization defines security policies

that state how to deal with sensitive information. These policies are high-level
policies that apply for the whole organization and span the three security do-

mains: physical, digital and social. One example of a high-level policy is: ”The

sales data should never leave the organization.” The high-level policies are refined

by the Human Resources (HR), Physical Security and IT departments into imple-

mentable, low-level policies, which are enforced via physical and digital security

mechanisms and training of the employees. One example of low-level policy is:

”There should be a firewall on every external-facing system”.

The erroneous refinement of a high-level policy into a low-level policy can intro-

duce design weaknesses in the security posture of the organization. For example,

although there is a low-level policy that places firewalls on every external-facing

system, an adversary may still obtain the sales data through copying it on a USB

stick. In addition, the erroneous enforcement of a low-level policy using a specific

security mechanisms may introduce implementation flaws. For example, although

there might be a firewall on every external-facing system, the firewall might not

be configured correctly. The organization needs assurance that these errors are

discovered and mitigated.

In this thesis we provide methods for testing whether (a) the high-level policies

are correctly refined into low-level policies that span the physical, digital and

social domain, and (b) whether low-level policies are correctly enforced is specific

mechanisms. Our contributions can be summarized as follows:

1. We propose a formal framework, Portunes, which addresses the correct re-

finement of high level policies by generating attack scenarios that violate a

high-level policy without violating any low-level policies. Portunes binds

the three security domains in a single formalism and enables the analysis of

policies that span the three domains. We provide a proof of concept imple-

mentation of Portunes in a tool and polynomial time algorithms to generate

the attack scenarios.

2. We propose a modal logic for defining more expressive high-level policies.

We use the logic to express properties of Portunes models and model evolu-

tions formally. We provide a proof of concept implementation of the logic

in the Portunes tool.

3. We propose two methodologies for physical penetration testing using social

engineering to address the correct enforcement of low-level policies. Both

methodologies are designed to reduce the impact of the test on the employ-

ees and on the personal relations between the employees. The methodolo-

gies result in a more ethical assessment of the implementation of security

mechanisms in the physical and social domain.

4. We provide an assessment of the commonly used security mechanisms in

reducing laptop theft. We evaluate the effectiveness of existing physical

and social security mechanisms for protecting laptops based on (1) logs

from security guards regarding laptop thefts that occurred in a period of two

years in two universities in the Netherlands, and (2) the results from more

than 30 simulated thefts using the methodologies in contribution 3. The

results of the assessment can aid in reducing laptop theft in organizations.

5. We propose a practical assignment of an information security master course

where students get practical insight into attacks that use physical, digital and

social means. The assignment is based on the penetration testing method-

ologies from contribution 3. The goal of the assignment is to give a broad

overview of security to the students and to increase their interest in the field.

Besides for educational purposes, the assignment can be used to increase the

security awareness of the employees and provide material for future security

awareness trainings.

Using these contributions, security professionals can better assess and improve

the security landscape of an organization.

ii

Samenvatting

Om informatiebeveiligingsrisico’s het hoofd te bieden, stellen organisaties een

beveiligingsbeleid op hoofdlijnen op, dat bepaalt hoe omgegaan dient te worden

met gevoelige informatie. Dit beleid is geldig voor de gehele organisatie en heeft

betrekking op drie beveiligingsdomeinen: fysiek, digitaal en sociaal. Een voor-

beeld van dergelijk beleid is ”Verkoopgegevens mogen nooit buiten de organisatie

komen.” Het beleid wordt door de afdelingen van Personeel en Organisatie (P&O),

IT en fysieke beveiliging verder uitgewerkt in gedetailleerde beveiligingsregels,

die worden afgedwongen door fysieke en digitale beveiligingsmechanismen, en

door training van medewerkers. Een voorbeeld van zo’n regel is ”Elk van buiten

toegankelijk systeem moet een firewall hebben.”

Fouten die optreden bij de vertaling van het beleid naar concrete regels of van

regels naar specifieke beveiligingsmechanismen, kunnen het beveiligingsniveau

van de organisatie aantasten. Alhoewel er een regel is die firewalls verplicht

stelt, kan een aanvaller bijvoorbeeld toch de verkoopdata verkrijgen door deze

op een USB stick te kopiren. Bovendien kunnen er in de handhaving van de gede-

tailleerde regels implementatiefouten zitten. Zo kan de firewall wellicht onjuist

geconfigureerd zijn. Organisaties moeten daarom de zekerheid hebben dat deze

fouten ontdekt en gerepareerd worden.

In dit proefschrift ontwikkelen we methoden om te testen of (a) het beveiligings-

beleid op correcte wijze is uitgewerkt in beveiligingsregels (fysiek, digitaal en

sociaal) correct is, en (b) deze regels op correcte wijze gehandhaafd worden door

beveiligingsmechanismen. Onze bijdragen zijn als volgt samen te vatten:

1. We introduceren een formeel raamwerk, Portunes, dat onderdeel (a) uitwerkt

door aanvalsscenario’s te genereren die het beveiligingsbeleid overtreden,

zonder daarbij de gedetailleerde beveiligingsregels te doorbreken. Portunes

kan de drie beveiligingsdomeinen in n model representeren, en de bijbe-

horende beveiligingsregels analyseren. We beschrijven een proof-of-concept

implementatie van Portunes in een tool en algoritmen die in polynomische

tijd aanvalsscenario’s genereren.

iii

2. We presenteren een modale logica voor het definiren van geavanceerder

beveiligingsbeleid op hoofdlijnen. We gebruiken deze logica om eigen-

schappen van Portunes modellen en hun evoluties formeel uit te drukken.

We presenteren tevens een proof-of-concept implementatie van deze logica

in de Portunes tool.

3. We stellen twee methoden voor om on-site penetratietesten uit te voeren

gebruikmakend van social engineering, als uitwerking van onderdeel (b).

Beide methodologien zijn ontwikkeld om de impact van de testen op de

medewerkers en hun onderlinge relaties zo veel mogelijk te beperken, en

daarmee een meer verantwoorde beoordeling van de implementatie van beveilig-

ing in het fysieke en sociale domein mogelijk te maken.

4. We presenteren een evaluatie van de meestgebruikte beveiligingsmechanis-

men om laptopdiefstal te reduceren. We evalueren de effectiviteit middels

de analyse van (1) rapporten van beveiligingsmedewekers met betrekking

tot laptopdiefstallen die hebben plaatsgevonden in een periode van twee

jaar bij twee Nederlandse universiteiten, en (2) de resultaten van meer dan

30 gesimuleerde laptopdiefstallen op basis van de methoden van bijdrage

3. De resultaten kunnen helpen om laptopdiefstal in de betreffende organ-

isaties te beperken.

5. We presenteren een opdracht in de context van een mastervak informatiebeveilig-

ing, waarin studenten praktische inzichten verkrijgen in aanvallen die fysieke,

digitale, en sociale technieken gebruiken. De opdracht is gebaseerd op de

technieken voor penetratietesten uit bijdrage 3.Het doel van de opdracht is

het geven van een breed perspectief op informatiebeveiliging en het ver-

groten van de interesse van de studenten in het vakgebied. Naast onderwi-

jsdoeleinden kan de opdracht ook gebruikt worden om het beveiligingsbe-

wustzijn van medewerkers te vergroten. Ook levert de opdracht materiaal

voor toekomstige security awareness trainingen.

Met behulp van deze bijdragen kunnen professionals op het gebied van infor-

matiebeveiliging het beveiligingslandschap van een organisatie doeltreffender beo-

ordelen en verbeteren.

iv

Acknowledgements

It is morning. I have a coffee and a chocolate muffin next to me. The university

laptop is in front of me, ready for its last task. While sipping from the warm coffee,

I am thinking of the last four years of my life. Four years full of nice memories,

years in which I traveled, I tried things, I laughed, I got (at least I think) smarter

and I met my love, Paula.

During these years I was surrounded with great colleagues and friends. Without

their support, my PhD would have been a very lonely and boring journey. First

of all I would like to thank to my promoter Pieter Hartel and my daily supervi-

sors, Qiang Tang in my early days, and Wolter Pieters in my more ”mature” days.

Pieter, it was a pleasure working with you. You guided me from day one of my

research, when you introduced me to Latex, up to last night, when we were dis-

cussing the abstract of the thesis. I particularly enjoyed the ”knifes on the table”

meetings, which sometimes lasted for hours. You were always strong in defend-

ing your views and noble in admitting when you were wrong. I guess if all your

students were like me, by now you would have had white hair or no hair at all.

Nevertheless, you were patient and determined until the very end. Thank you for

not giving up on me.

And there is Qiang. We started our lives in the university the same day, Qiang as

a post-doc, I as a PhD. Qiang came full with ideas and I came full with enthusi-

asm. I vividly remember, during my first week in Enschede, I lost my passport.

Qiang and I were walking twice the whole distance from Macandra to the Univer-

sity (10km), in the dark, searching through the autumn leaves for a Macedonian

passport. It is one of those things you can never forget. Qiang, I will also remem-

ber you by the trip we took in Chicago and all the parties we went....especially

the ones before Shenglan joined you. Although you were my daily supervisor

only for the first year of my research, you were always a friend happy to provide

insights in the security field and the PhD life.

After the first year, Wolter become my daily supervisor. From the beginning he

was the person I could share my ideas with, discuss how to proceed forward, and

v

was the perfect mediator between Pieter and me. Wolter, thank you for the guid-

ance in the last three years and for the fresh ideas you brought in my research. I

am looking forward to work together with you on topics beyond my PhD research.

Besides my supervisors I had my colleagues next to me. Andre, Shashank and

Ove, we were the three musketeers and d’Artagnan. We started our research life

at the same time and we are finishing it at the same time (more or less). André, you

were my best friend and my colleague in research. Thank you for being always

happy to help me with an advice or a drink. Shashank and Ove, this PhD would

have been less colorful without you two. When I will look backward at this period

of my life, I will remember with a smile the weekends we had at the summer house

of Andre and the great trip to Ibiza.

I also want to thank all the current and former colleagues from the DIES group:

Stefan, Christoph, Arjan, Dina, Michael, Frank, Jonathan, Saeed, Luan, Mohsen,

Frank, Begül, Dusko and the others that I am now forgetting. I will miss our coffee

breaks at 3pm, where we discussed about all the topics in life. I will remember

the spontaneous trip we took to Barcelona as a result of one of those discussions

(Christoph, it is not a nine hours drive to Barcelona). Always present were my

friends from SecurityMatters: Damiano, Emmanuele, Michele and Spase. We had

great discussions together (when Michele would let us talk) and were supporting

each other throughout the years. Guys, thank you for being part of my research

life. I am looking forward to work with you in the future. I am also grateful to my

favorite secretaries, Bertine and Nienke. Nienke, I was always happy to start the

day with you and a hot coffee. Thank you for helping me through the mazes of

the Dutch laws and the university procedures. Bertine, thank you for helping me

in preparing this thesis and for the useful advices on holiday destinations.

The last four years I spent living in Macandra, the ugliest building in Enschede

with the biggest hart in the Netherlands. I met a lot of lifelong friends there. At the

beginning it were students from the Erasmus network, with which I spent lots of

sleepless nights and great adventures. In the later years, I met there Juan Carlos,

Mirjam, Yuri, Edit, Mehmet and Damla. Friends, thank you for the Munchkin

games, the skiing visits at Bottrop and the many events we shared together.

In Macandra I met not only my friends, but also my love. Paula, I love you with

all my heart and I am grateful for the support and the patience you had during my

PhD. Together we spent the best moments of my PhD life. I am looking forward

for many more

Finally, the biggest gratitude goes to my family. Mama, tato, bato i Maja. Vie ste

mi familija od soništata. Vo poslednive četiri godini, tokmu zaradi vas nikogaš

ne se počustvuvav sam. Cel život bezuslovno me podržuvate vo moite nameri i

vi

sekogaš ste bile pokraj mene. Se nadevam vo idnina će se druzime počesto i će

imamme ušte mnogu srećni momenti zaedno.

Well, my coffee is over, and my muffin is long gone. Time to start the day and get

to work. A new chapter in my life is awaiting to be written.

Den Haag, Trajce Dimkov
February 2012

To Paula...
ix

Contents

1 Introduction 5
1.1 Introduction . 5

1.2 Motivating example . 7

1.3 Policy alignment . 9

1.3.1 Horizontal alignment of policies 11

1.3.2 Vertical alignment of policies 12

1.3.3 Policy enforcement . 13

1.4 Research question . 14

1.5 Contribution . 16

1.6 Outline of the thesis . 18

Part I: Vertical policy alignment 21

2 Modeling the physical, digital and social domain 23
2.1 Introduction . 24

2.2 Case study . 25

2.2.1 Confidentiality of the data in a laptop 25

2.2.2 Rootkit attacks on a laptop using social engineering 26

2.3 Integrated security model of the world 27

2.4 Security models . 29

2.4.1 TAM and Secure Tropos 30

2.4.2 Ambient calculus . 32

2.4.3 Model of Scott . 33

2.4.4 Model of Dragovic . 34

2.4.5 Comparison of the models 35

2.5 Conceptual models . 37

2.6 Conclusion . 37

1

3 Portunes: Representing multi-domain behavior 39
3.1 Introduction . 40

3.2 Related work . 41

3.3 Portunes . 42

3.3.1 Requirements and motivation 42

3.4 The Portunes graph . 43

3.5 The Portunes language . 47

3.5.1 Overview of Klaim . 48

3.5.2 Syntax of the Portunes language 49

3.5.3 Auxiliary functions . 54

3.5.4 Operational semantics 57

3.5.5 Net semantics . 58

3.6 Conclusion . 62

4 Analyzing Portunes models 63
4.1 Introduction . 63

4.2 Related work . 65

4.3 Preliminaries . 65

4.4 Algorithms . 67

4.4.1 Intuition for the algorithms 70

4.4.2 Algorithm I: Finding all action templates 73

4.4.3 Algorithm II: Generating partial attacks 77

4.4.4 Algorithm III: Simulating the attacks 80

4.5 Correctness of the analysis . 82

4.6 Implementation . 83

4.7 Benchmark . 85

4.7.1 Groove . 85

4.7.2 Models . 85

4.7.3 Results from the benchmark 86

4.8 Conclusion . 87

5 Expressing high-level policies in Portunes 89
5.1 Introduction . 90

5.2 Motivating examples . 91

5.3 Related work . 93

5.4 Net and net evolution predicates 94

5.4.1 Net predicates . 95

5.4.2 Semantics of state predicates 96

5.4.3 Transition label predicates 97

5.5 Logic for Portunes models . 99

5.6 Using the logic to specify security policies 100

5.6.1 Examples revisited . 103

5.6.2 Other uses of the logic 107

5.7 Conclusion . 107

Part II: Policy enforcement 111

6 Methodologies for Penetration Testing using Social Engineering 113
6.1 Introduction . 114

6.2 Related work . 115

6.3 Requirements . 116

6.4 Environment-Focused Methodology 117

6.4.1 Actors . 117

6.4.2 Setup . 118

6.4.3 Execution . 120

6.4.4 Closure . 120

6.4.5 Case study . 122

6.4.6 Lessons learned from the penetration tests 122

6.5 Custodian-Focused Methodology 123

6.5.1 Actors . 124

6.5.2 Setup . 125

6.5.3 Execution . 126

6.5.4 Closure . 126

6.5.5 Case study . 127

6.5.6 Lessons learned from the penetration tests 127

6.6 Evaluation . 129

6.7 Conclusion . 132

7 Laptop Theft: An Assessment of Security Mechanisms 133
7.1 Introduction . 134

7.2 Literature overview . 135

7.3 Methodology . 136

7.3.1 Log analysis . 137

7.3.2 The penetration tests . 139

7.4 Qualitative analysis . 144

7.4.1 Surveillance cameras . 144

7.4.2 Access control . 145

7.4.3 Security awareness of the employees 146

7.4.4 Limitations of the observations 146

7.5 Quantitative analysis . 147

7.5.1 Selection of the variables 148

7.5.2 Correlation between the variables 149

7.5.3 The success likelihood of an attack 151

7.6 Conclusion . 153

8 Training Students to Steal: A Practical Assignment 155
8.1 Introduction . 156

8.2 Course description . 157

8.2.1 Physical and social engineering attacks 158

8.2.2 Offline attacks . 159

8.2.3 Online attacks . 160

8.3 Implications . 160

8.3.1 Legal implications . 160

8.3.2 Reducing unexpected outcomes 161

8.3.3 Ethical implications for the students 161

8.3.4 Ethical implications for the employees 165

8.4 Using Portunes to produce attack scenarios 166

8.4.1 Setup of the practical assignment 167

8.4.2 Unanticipated difficulties 167

8.5 Conclusion . 169

9 Conclusions 171
9.1 Scientific contributions . 173

9.2 Practical contributions . 174

9.3 Future work . 175

9.4 Application of the results to other research areas 176

A Comparison of related models 178

B Rules of engagement 186

C Informed consent 187

D Sample report of a laptop theft 188

E Get out of jail card 189

F Note left from the testers 190

G Successful and unsuccessful attempts during the penetration tests 191

H Variables used in the quantitative analysis 199

4

Chapter 1

Introduction

”Confidential information on almost 130,000 prisoners and dangerous criminals,
which was stored on an unencrypted computer memory stick, has been lost by the
Home Office, sparking yet another Government data crisis.”

The Telegraph, 22.08.2008

”Soldier smuggled highly classified data out of his intelligence unit on a disc dis-
guised as a music CD [...] He is suspected of disclosing more than 150,000 diplo-
matic cables, more than 90,000 intelligence reports on the war in Afghanistan and
one video of a military helicopter attack - all of it classified. Most of the information
was given to WikiLeaks.”

The New York Times 08.07.2010, 07.04.2011

”The Stuxnet worm, designed to be delivered through a removable drive like a USB
stick [...] was designed specifically to attack the Siemens-designed working system
of the Bushehr plant and appears to have infected the system via the laptops and
USB drives of Russian technicians who had been working there.”

Guardian 26.09.2010 02.10.2010

.

1.1 Introduction

The threat of a security breach and loss of sensitive information forces organiza-

tions to provide secure and safe environments where the information is stored and

5

Chapter 1. Introduction

Figure 1.1: High-level policies are refined into low-level, implementable policies. The majority

of the current IT research (dashed line) focuses on modeling and analysis of the digital aspect of

security, limiting the expressiveness of the models to attacks where the adversary uses only digital

means to achieve her goal. The focus of this thesis is the modeling and analysis of attacks where

the adversary uses physical, digital and social means (solid line).

processed. An organization protects sensitive information by developing a secu-

rity program. The security program starts with the management defining all se-

curity requirements through high-level security policies. These policies describe

the desired behavior of the employees (social domain), the physical security of

the premises where the employees work (physical domain) and the IT security of

the stored and processed information (digital domain) [88]. After the high-level

policies have been designed, the Human Resources (HR), Physical Security and

IT departments refine these policies into implementable, low-level policies [17],

which are enforced via physical and digital security mechanisms and training of

the employees.

During the refinement and enforcement of the policies mistakes may occur. These

mistakes could be exploited by both external parties as well as disgruntled em-

ployees, insiders, to achieve a malicious goal. Therefore, the management needs

assurance that both refinement and enforcement are done correctly. This assurance

is achieved in two steps: auditing and penetration testing. During the auditing pro-

cess, auditors assess whether the security policies produced by the departments

6

1.2. Motivating example

are correct with respect to the policies defined by the management. After the poli-

cies from the departments have been audited, penetration testers test the security

mechanisms correctly enforce the policies from the departments.

Both auditing and penetration testing are mature fields in information security

and follow methodologies that aim for reliable, repeatable and reportable results.

However, the attention to the physical and social domain in these methodologies

is limited (Figure 1.1). Unfortunately, the adversaries do not limit their actions

only to the digital domain but they use any weak link they can find, regardless of

the domain. The lack of methodologies for auditing and testing the alignment of

security policies across all three domains makes an organization vulnerable to an

attack where the adversary combines physical, digital and social actions to achieve

her goal.

This thesis focuses on assessing the security of an organization by methodolog-

ical and experimental tool support for the specification and analysis of security

policies that span the three domains, as well as enforcement of these policies via

security mechanisms. We show how the contributions in the thesis can help in

mitigating the threat from insider attacks, where employees with intimate knowl-

edge of the limitations and the gaps in the existing security policies and security

mechanisms obtain access to sensitive information.

1.2 Motivating example

The management of a fictitious organization ACME has defined a set of high-

level policies that allow the organization to mitigate security threats and support

business processes. For example, to comply with legislation the management has

defined the high-level policy HLP1: Aggregate sales data should be given to all
shareholders. In the past few years ACME has grown rapidly, causing a shortage

of working places for the employees in its facility. As a response, the management

produced the policy HLP2: One quarter of the employees should work from home.

Recently, the management identified a new threat. A new competitor is entering

the market, offering the same services as ACME. The management wishes to pro-

tect its client information from the threat of industrial theft and introduces a new

high-level policy HLP3: Sales data should not leave the financial department.
This policy is implemented by the departments for physical security, IT security

and HR (human resources). In turn, each of the departments refines the policy

from management into a set of more specific threats with concomitant security

policies in their domain.

7

Chapter 1. Introduction

High-level threat: The competitors get the list of clients.

High-level policy from management:

Sales data should not leave the financial department.

Domain Example low-level threat Example low-level policies
All windows should be locked.

Physical Hard drives get stolen from the office Enforce two-factor authentication on all

entrance doors of the department.

Kensington locks on all computers.

Monitor all network traffic.

Digital Malware infection from the Internet Forbid remote connections on the

computers.

Forbid software download.

Forbid bringing non-employees at work.

Social Employee discloses information Forbid sharing any sales information

with non-employees.

Forbid employees sharing security

policies with competitor employees.

Figure 1.2: A high-level policy and the response from each of the three departments

Table 1.2 provides one representative sample threat identified by each department

and three sample policies introduced to mitigate the sample threats. In reality,

the number of identified threats and the number of low-level policies that mitigate

these treats is much larger and depends on the size and the security requirements

of the organization.

Each of the three departments focuses on security policies that mitigate threats

from their domain, and relies on policies from the other departments for the other

domains. For example, the IT department focuses only on threats from malicious

outsiders using remote access. The IT department relies on the physical security

department to provide physical isolation between the data and non-employees and

on the HR department to educate the employees against being tricked into giving

the data away.

However, a number of actions allowed in one domain, when combined with al-

lowed actions from the other two domains, may lead to an undesired behavior.

Consider the road apple attack:

The competitor leaves a number of dongles with malicious software in front
of the premises of the organization. An employee takes one of the dongles
and plugs it in his computer in the financial department. When plugged in,

8

1.3. Policy alignment

the malicious software uses the employee credentials to get the sales data,
encrypts the data and sends it to a remote server.

In this example the competitor obtains the sales data by intelligently combining

the unawareness of the employee, the inability of the doors to stop the dongle

and the inability of the firewalls to inspect encrypted traffic. However, none of

the departments can individually produce all policies that will stop this attack,

because for some policies there are no mechanisms that can enforce them, or the

departments cannot identify a threat in their domain that requires such a policy.

The management must be assured that the low-level policies stop all forbidden

behaviors and allow all allowed behaviors. Thus, the policies should not only

mitigate attacks that use purely digital, physical or social actions, but also any

combination of them.

Problem 1: How can the management be sure that the total set of low-level poli-
cies produced by the three departments matches their high-level policy?

After the low-level policies have been defined, technicians and trainers implement

security mechanisms to enforce them. Even if the policies address all allowed and

forbidden behaviors, there might still be mistakes in their enforcement. Techni-

cians might put the wrong lock on a door, an employee might ignore or forget

some of the policies or some computers might be misconfigured and still accept

remote connections. Therefore the departments need to be able to test whether

the security policies are properly enforced. These tests should include attempts

of gaining physical access to the restricted areas, as well as attempts in tricking

the employees to violate a policy. However, organizations are reluctant to execute

these tests, because they fear that the tests may stress the employees when asked

to violate a policy or disrupt the working process because of accidental damage

during the physical access, which results in financial loss.

Problem 2: How can the three departments be sure that the security mechanisms
in place are following the design specifications of the low-level policies?

1.3 Policy alignment

Policies can be defined at different level of abstraction. In this thesis we use a

view of the world as presented by Abrams, Olson and Bailey [73, 10].

9

Chapter 1. Introduction

Definition 1. Policy alignment is the process of adjusting security policies among
different levels of abstraction to support the business goals of the organization.

Policy alignment consists of horizontal alignment of high-level policies, vertical

alignment of high-level policies into low-level policies and enforcement of low-

level policies via security mechanisms.

Definition 2. Policy refinement is the process of defining multiple policies with a
greater level of detail for a given general policy.

The refinement step should be repeated for each level of abstraction, starting from

the policies defined on the highest level of abstraction, toward policies to a lower

level of abstraction [73]. To simplify the presentation, we use just two levels of

abstraction for the policies.

Definition 3. High-level policies are statements that allow or forbid a set of be-
haviors.

A behavior is a sequence of actions, where an action is a discrete event that cannot

be broken up further. For example, the road apple attack is a behavior which con-

sists of the actions: competitor leaves the dongle, an employee takes the dongle,

an employee plugs the dongle in her computer, the malicious software gets the

data, the software encrypts the data and the software sends the encrypted data to

a remote server.

The high-level policies divide the space of possible behaviors into behaviors that

are allowed, behaviors that are forbidden and behaviors that are neither forbidden

nor allowed. In the motivating example HLP1 and HLP2 define two sets of be-

haviors that are allowed, while HLP3 defines a set of behaviors that is forbidden.

All other behaviors are neither allowed nor disallowed.

Definition 4. Low-level policies are implementable rules close to the abstraction
level of security mechanisms.

The low-level policies focus on events rather than on behaviors. Since an event

can either occur or not but not both, the low-level policies either allow or forbid

an action, dividing the space of possible actions into two disjunct sets. A behavior

is allowed by the low-level policies if all the actions it consists of are allowed by

the low-level policies. A behavior is forbidden by the low-level policies if at least

one of its actions is forbidden by the low-level policies.

10

1.3. Policy alignment

A
1 A

2

a
2

a
1

A :

A

:

1

2

Sales data should never leave the organization.

Low-level policies that enable employees to work

from home.

2

1

:

a :

a

Some employees should work from home.

Low-level policies that forbid the sales data leaving

the organization.

Figure 1.3: Ideally, there is no gap nor conflict between high-level policies, and

all high-level policies are completely refined into low-level policies.

Undefined

ForbiddenAllowed

Conflicting

Allowed: Aggregate sales data should be given
to all shareholders.

Forbidden:

Undefined:

Sales data should not leave the
financial department.

Any data other than the sales data.

Figure 1.4: High-level policies may conflict with each other or might be not de-

fined.

1.3.1 Horizontal alignment of policies
Definition 5. A set of high-level policies is mutually consistent if there is no be-
havior that is both allowed and forbidden by the policies.

Definition 6. A set of high-level policies is jointly exhaustive if every behavior is
either allowed or forbidden by the policies.

Definition 7. Horizontal policy alignment is the process of positioning high-level
policies that are at the same level of abstraction so that they are mutually consis-
tent and jointly exhaustive.

Consistency between policies means that the policies should not conflict with each

other and exhaustiveness means that the policies address all possible behaviors

that might occur.

In the motivating example, the organization has a high-level policy that enforces

a behavior: Aggregate sales data should be given to all shareholders. With the

introduction of the policy that forbids a behavior: Sales data should not leave
the financial department the set of high-level policies is not consistent anymore.

There is a conflict between the two policies, because the first policy forbids the

sales data leaving the financial department, while the second policy requires some

of the sales data to leave the organization.

11

Chapter 1. Introduction

On the other hand, the absence of high-level policies allowing or forbidding a

behavior may introduce a gap in security. In the motivating example, there will be

no mechanism that stops an employee giving data other than the sales data to the

competitors, because what happens with the rest of the data is not addressed by

any of the high-level policies. Since the management has no clear policy on this

behavior, security professionals would not know whether to allow or forbid it.

1.3.2 Vertical alignment of policies
Definition 8. A set of low-level policies is complete with respect to a set of high-
level policies if every behavior allowed by the high-level policies is allowed by
the low-level policies and every behavior forbidden by the high-level policies is
forbidden by the low-level policies [10].

Definition 9. Vertical policy alignment is the process of refining the high-level
policies into low-level policies so that the low-level policies are complete with
respect to the high-level policies.

Even when a set of high-level policies is exhaustive and consistent, the refinement

of high-level, organizational policies to low-level, implementable policies may

still be incomplete. A high-level policy might be refined into overly permissive

or overly restrictive low-level policies, which introduces an opportunity for an

adversary to violate the high-level policy (Figure 1.3).

In the motivating example, overly permissive low-level policies such as allowing

employees to bring storage devices to work and allowing dongles to be plugged

in the computer allow the violation of the high-level policy HLP3.

There might be two cases when a set of low-level policies is not complete:

• A behavior that is allowed by a high-level policy is forbidden by the low-

level policies (area C1 from Figure 1.5). Such conflicts occur because the

high-level policy is refined in overly restrictive low-level policies. In the

motivating example, if an employee tries to work from home, she will be

stopped by the low-level security policy: ”Forbid remote connections on
the computers”.

• A behavior that is forbidden by a high-level policy is allowed by the low-

level policies (area C2). Such conflicts occur because the high-level policy

is refined into low-level policies that are too permissive. In the motivating

example, the road apple attack occurs because the low-level policies are too

permissive. The policies allow the employees to bring storage devices at

work and allow dongles to be plugged in the computers.

12

1.3. Policy alignment

A
1 A

2

a
2

a
1

A :

A

:

:

1
Sales data should never leave the organization.

An employee cannot log-in from home.

The data is moved to a remote server.

2
: Some employees should work from home.

C

C
1

2
C

1

C
2

Figure 1.5: In a realistic case, there are behaviors that are allowed by the high-

level policies but are forbidden by the low-level policies (C1), and behaviors that

are forbidden by the high-level policies but yet the low-level policies allow them

(C2).

One possible approach in addressing Problem 1 from Section 1.2 is providing a

formal assessment whether the low-level policies are complete with respect to the

high-level policies. The first part of the thesis uses this approach to address the

problem.

1.3.3 Policy enforcement

Definition 10. Policy enforcement is a process where low-level policies are en-
forced via security mechanisms.

During policy enforcement, the security and IT departments place security mech-

anisms that enforce the low-level policies from the physical and digital domain,

and the HR department educates the employees on which actions are forbidden.

To test whether the set of security mechanisms is complete, testers check whether

these mechanisms are sufficient to enforce the policies. Such tests are done using

social engineering in the social domain, physical access in the physical domain

and hacking in the digital domain.

Definition 11. A set of security mechanisms is complete with respect to a set
of low-level policies, if every action that is allowed by the low-level policies is
allowed by the mechanisms, and every action that is forbidden by the low-level
policies is forbidden by the mechanisms.

In the motivating example, the penetration testers would test whether the employ-

ees when politely asked would let a foreign person inside the financial department,

or test whether the computers have remote access disabled.

One possible approach in addressing Problem 2 from Section 1.2 is orchestrating

13

Chapter 1. Introduction

ethical penetration tests that include obtaining physical access and usage of so-

cial engineering. The second part of the thesis uses this approach to address the

problem.

1.4 Research question

This thesis tackles the problem of policy alignment across the three security do-

mains. The focus of the thesis is assessing the vertical policy alignment from

high-level to low-level security policies and testing the enforcement of low-level

security policies via security mechanisms.

The main research question we seek to answer in the thesis is:

Main research question: How can we align and enforce security poli-

cies spanning the physical, digital and social domain?

Aligning security policies across domains requires three preliminaries. First, the

departments should not work in isolation but cooperate in aligning the policies.

To work together, the departments need a common language for representing the

policies and specify a behavior. Second, obtaining a complete set of behaviors

that violate a policy requires exhaustive search on all possible behaviors that can

occur for the given low-level policies. Finally, policy testing requires the usage of

social engineering and attempts in obtaining physical access.

To address these issues, we refine the main research question in the following re-

fined research questions:

Research question 1: How can we represent the policies from the three

domains in one formal framework?

Representing all three security domains in a single formalism is challenging.

Firstly, the appropriate abstraction level needs to be found. A too low-level of

abstraction for each domain (down to the individual atoms, bits or conversation

dynamics) makes the representation complicated and unusable. However, ab-

stracting away from physical spaces, data and relations between people might

ignore details that contribute to an attack. Secondly, the domains have different

properties making them hard to integrate. For example, mobility of digital data is

14

1.4. Research question

less restricted than mobility of objects in the physical domain. Likewise, physical

objects cannot be reproduced as easily as digital data.

Research question 2: How can we efficiently discover all cross-domain

threats caused by policy misalignment?

Having a formal definition of the environment allows formal methods and tools

to exhaustively search all possible behaviors that can occur in the organization.

This list of allowed behaviors can then be compared to the behaviors that are al-

lowed by the high-level policies to assess whether any of the produced behaviors

is forbidden by the high-level policies. The challenge of this approach is to make

it scalable and to ease the assessment of the large amount of behaviors it produces.

Research question 3: How can we test and improve the enforcement

of the low-level policies?

Addressing the third refined research question rises three challenges. First, during

a penetration test the testers use social engineering on the employees and try to

obtain physical access to a specific resource or location. Social engineering al-

ways includes some form of deception of the employee, which in turn may cause

stress, discomfort or even disgruntlement among employees.

Second, the deployment of security mechanisms and training of the employees is

limited by a fixed budget. Currently, the organizations have no clear overview of

the effect of security mechanisms from one domain on the security in the other

domains. Without a clear overview on how security mechanisms from the three

domains supplement each other, it is challenging to prioritize security mechanisms

deployment.

Finally, to perform good quality tests, the testers should have training in exploiting

vulnerabilities in each of the domains and how have in-depth knowledge on how

the vulnerabilities relate between each other. Universities are an excellent location

to provide this education, because they can provide environment where the testers

can test vulnerabilities and expose them to the ethical implications of penetration

testing. However, teaching penetration testing at university level raises the issue

whether the students will abuse the obtained skills and knowledge.

15

Chapter 1. Introduction

1.5 Contribution

This thesis provides methodological and experimental tool support to assess com-

pleteness of the policy refinement and techniques for testing the policy enforce-

ment. The results from this thesis can be used as a mitigation of the threat from

insider attacks. In detail, the contributions of this thesis can be summarized as

follows:

• A FRAMEWORK that binds the three domains in a single formalism. We

present Portunes, a formal framework which integrates all three security

domains in a single environment, thereby enabling analysis of policies that

span the three domains. Portunes consists of a graph and a language, that

describe a model of the environment of interest at a different level of ab-

straction. The graph is a visual representation of the environment focusing

on the relations between the three security domains. It provides a concep-

tual overview of the environment that is easy to understand by the user. The

language is at a relatively low level of abstraction, close to the enforcement

mechanisms. The language is able to describe low-level security policies

as predicates and behaviors as process definitions. We provide a proof of

concept implementation of Portunes and polynomial time algorithms that

produce possible behaviors for a given Portunes model.

• A LOGIC for defining high-level policies. We propose a modal logic to de-

scribe high-level policies and to express properties of Portunes models and

model evolutions formally. The logic is used to find subsets of actions that

lead to violation of a high-level policy. The logic enables security profes-

sionals to focus only on subsets of attack scenarios that share a common

property. We provide a proof of concept implementation of the logic in the

Portunes tool.

• TWO METHODOLOGIES for physical penetration testing using social en-

gineering. The goal of the penetration tests is to gain possession of an asset

from the premises of the organization by using a combination of hacking,

physical access and social engineering. Both methodologies are designed to

reduce the impact of the test on the employees and the relationship between

the employees.

16

1.5. Contribution

• AN ASSESSMENT of the commonly used security mechanisms in reduc-

ing laptop theft. We evaluated the effectiveness of existing physical and

social security mechanisms for protecting laptops based on (1) logs of lap-

top thefts which occurred in a period of two years in two universities in

Netherlands, and (2) the results from more than 30 penetration tests we or-

chestrated over the last three years, where students tried to gain possession

of marked laptops in the same universities. The results from the log analysis

and the penetration tests show that the security of an asset depends mainly

on the level of security awareness of the employees, and to a lesser extent

on the technical or physical security mechanisms.

• AN ASSIGNMENT for increasing the security awareness for employees and

future security professionals. We designed the practical assignment of an

information security master course where students get practical insight on

attacks that use physical, digital and social means. The goal of the security

course is to give a broad overview of security to the students and to increase

their interest in the field.

Figure 1.6: Contributions of the thesis

17

Chapter 1. Introduction

Research questions
RQ1 RQ2 RQ3

Chapter 1
Chapter 2 �
Chapter 3 �
Chapter 4 �
Chapter 5 � �
Chapter 6 �
Chapter 7 �
Chapter 8 �
Chapter 9

Figure 1.7: Research questions addressed in the chapters

1.6 Outline of the thesis

The remainder of this thesis is divided in two parts: Vertical Policy Alignment and

Policy enforcement. The outline of the thesis is depicted in Figure 1.6.

Part I provides a novel approach for representing high-level and low-level poli-

cies and techniques for assessing the refinement of the high-level into low-level

policies. Chapter 2 first introduces a set of requirements that a model representing

all three domains should satisfy. The chapter describes the current state of the art

models and analyzes their compliance with the distilled requirements. Chapter 3

introduces Portunes. Portunes is a formal framework which integrates all three

security domains in a single environment, thereby enabling the analysis of poli-

cies that span the three domains. Chapter 4 describes algorithms that generate all

possible behaviors for a given Portunes model and a proof of concept implemen-

tation. Chapter 5 provides a modal logic that enables description of high-level

policies. We apply the presented framework and logic to describe malicious be-

havior of an insider, who uses actions that span the three domains to achieve her

goal. As a running example through out the first part of the thesis, we use the

road apple attack, where the insider uses the trust from a colleague to obtain the

financial data.

Part II expands the field of testing policy enforcement. Chapter 6 proposes two

methodologies for performing physical penetration tests using social engineering.

Chapter 7 assesses the effectiveness of security mechanisms in the physical and

18

1.6. Outline of the thesis

social domain. Chapter 8 proposes a practical assignment for teaching students

penetration testing skills. As a running example of the second part of the thesis,

we explore the problem of protecting laptops from theft. The last chapter of the

thesis, Chapter 9, summarizes the main contributions and provides an outlook on

future research directions.

Figure 1.7 illustrates which research questions are addressed in the chapters.

19

20

Part I

Vertical policy alignment

The first part of the thesis focuses on vertical policy alignment. We show how

low-level policies and high-level policies can be modeled in a single formal frame-

work, and how to analyze the completeness of low-level policies with respect

to high-level policies. We use the vertical policy alignment to help in describ-

ing, generating and analyzing malicious insider behaviors. As a running example

throughout the first part of the thesis, we use the road apple attack, where an in-

sider uses the trust from a colleague to obtain secured data.

First, in Chapter 3 we show how to model low-level policies, behaviors and as-

pects from the three security domains. In Chapter 4 we show how for a given

model, we can automatically generate a possible malicious behavior. In Chapter 5

we present a logic that can be used to represent high-level policies. There can be

many behaviors that lead to the violation of a single high-level policy. Therefore

the logic can be used to select a subset of behaviors that satisfy a high-level policy.

The results from the first part of the thesis can be used in two domains, physical

penetration testing and auditing. In penetration testing, the testers are interested

in a set of attack scenarios that do not violate any low-level policies but still allow

them to achieve their goal. After scouting the premises of an organization, the

testers can use Portunes to generate a model of the implemented low-level poli-

cies and produce attack scenarios automatically. In auditing, the auditors want to

assess whether the low-level policies are complete with respect to the high-level

policies. Auditors can use Portunes to check whether there exists any behavior

that can violate a high-level policy.

21

Chapter 1. Introduction

22

Chapter 2

Modeling the physical, digital and
social domain∗

Models play an important role in securing IT systems. They are used

to identify possible threats and represent attack propagation through-

out the network. We show that current models are not powerful enough

to identify the emerging threats from miss-aligned policies due to the

inability to represent physical and social aspects from security, such

as physical mobility, physical access and social interaction between

people. Researchers have proposed security models that particularly

focus on representing physical access and social interaction. We show

that none of the current security models simultaneously considers the

physical and social aspect of security to a satisfactory extent. As a

result, none of the current security models effectively represents the

security policies from the physical, digital and social domain. There-

fore these models cannot identify potential security threats where an

adversary uses physical access and social interaction to achieve a ma-

licious goal.

∗This chapter is a minor revision of the paper ”On the inability of existing security models to

cope with information mobility in dynamic organizations” [4] published in the Proceedings of the

Workshop on Modeling Security (MODSEC’08), CEUR Workshop Proceedings, 2008

23

Chapter 2. Modeling the physical, digital and social domain

2.1 Introduction

To secure their sensitive information, organizations define policies that restrict

physical mobility of people and assets, digital mobility of information and so-

cial interactions between employees. In the last decade three main trends have

emerged in information systems, that increase the need for a formal approach in

studying such policies. The first is information omnipresence raised by the in-

creasing usage of mobile devices. The second trend is the increasing usage of

outsourcing. Organizations gain access to a highly trained workforce by becom-

ing decentralized and by outsourcing whole business processes and departments.

The last trend is the increasing cooperation between organizations. To increase

market share, organizations carry out joint projects with other organizations and

extensively hire part-time consultants. These trends lead to increased risk from

social engineering attacks [69] and attacks where the adversary uses physical ac-

cess [11]. Attacks that use physical access and social engineering emphasize the

need for closer analysis of the policies that define the access to information and

interaction between employees and their alignment to the high-level security poli-

cies of the organization.

Researchers from the industry are aware of the increase of mobility of people

and assets [63, 75, 100] as well as the impact of social interactions on secu-

rity [15, 107, 62]. A number of mechanisms, such as best practices of protect-

ing against laptop theft and increasing the security awareness of the employees

are proposed to help the organization mitigate the threats due to mobility and so-

cial interaction [61, 118, 119, 116, 117]. All of the solutions partially restrict the

mobility of data and laptops and are based on best practice criteria.

Problem Information omnipresence, outsourcing and cooperation between orga-

nizations increase information mobility and social interactions more than ever,

making it increasingly difficult to align the low-level security policies with the

high-level security policies in the organization.

Contribution A step toward understanding the security implications of the mo-

bility of information and the social interactions in an organization is to create a

model that includes the digital, physical and social aspect of security. We show

that threats that arise from mobility of information and social interaction can-

not be presented with the existing security modeling techniques. We define the

requirements for an integrated security model and look in the literature at alterna-

tive models of security that can represent the mobility of information and social

interaction. We analyze state of the art security models using attack scenarios pre-

sented in a case study, show that none of the new security models consider both

of information mobility and social interaction to a satisfactory extent, and present

24

2.2. Case study

requirements for an integrated model that addresses this deficiency.

The remainder of the chapter is organized as follows. Section 2.2 provides a case

study of current threats that include mobility of objects, interaction between a

person with a machine and interaction between people. Section 2.3 introduces the

requirements for an integrated security model that is able to present the attacks

presented in the case study. Section 2.4 presents the analysis of current models

and shows to which extent the security models satisfy the requirements of the

integrated security model. Section 2.5 briefly touches on a few informal models

that describe physical access and social interaction and Section 2.6 concludes the

chapter.

2.2 Case study

To provide a focus for the analysis, we present two attacks on a laptop. The first

type of attack is based on permanent physical possession of the laptop and focuses

on the confidentiality of the information stored inside. The second type of attack

introduces social engineering as a way to provide access to the laptop and focuses

on the integrity of the data in the laptop.

We chose these attacks because they include a combination of social engineering

with physical and digital access, making them a representative set of the type of

attacks we are interested in and a suitable set for analyzing the expressiveness of

presented models.

2.2.1 Confidentiality of the data in a laptop

If the adversary is in possession of the laptop, the adversary is also in possession

of the encryption keys, making the storage of encryption keys in tamper resistant

hardware crucial. The threat model of a storage device [55, 27] provides a variety

of options for the adversary to consider, such as removal or tampering with parts

of the device. The need for a good protection of the encryption keys has become

widely acknowledged after the coldboot attack [53], which is therefore worthy of

further study.

To present the coldboot attack, we first introduce a simplified example of present-

ing encrypted data to a user as shown in Figure 2.1. The snapshot is taken from

the Microsoft Threat and Analysis Modeling tool (TAM) and modified (e.g. num-

bers are added to present the sequence of the calls), to give a better overview of

25

Chapter 2. Modeling the physical, digital and social domain

Figure 2.1: Coldboot attack

the example.

The user presents to the operating system a key coupled with a request that defines

the data the user wants to read (1). The operating system forwards the request to

the hard drive (2) and recovers the encrypted data (3). Then, the operating system

loads the encrypted data together with the key into the RAM (4). From the RAM,

the operating system feds the data into the processor (5), which as a result returns

the plain text (6). Th operating system then sends the plain text to the user (7,8). In

the coldboot attack, the adversary does not target the hard drive with the sensitive

information, nor the operating system, but the RAM where the encryption keys

are stored. When it is not possible to boot the computer from another media,

the adversary physically transfers the RAM to another computer, and dumps the

memory on a hard drive. Later, the adversary has all the time needed to use search

algorithms on the dumped memory to get the encryption keys.

2.2.2 Rootkit attacks on a laptop using social engineering

Stealing a laptop provides an instantaneous benefit to the adversary. However,

installing malware that sends data periodically from the internal network of the

organization to the adversary is more dangerous. To infect the network, the adver-

sary needs to combine social engineering with malicious software such as rootk-

its [93], making the mobile device an excellent carrier of the malicious software.

A rootkit [93] is software that hides itself and other files from diagnostic and se-

curity software and is used in a bundle with viruses, Trojans and other malicious

software. A rootkit can be installed on the ROM of any peripheral device [111],

in the ACPI tables in the BIOS [112] or in the RAM of the laptop [109]. There

are several ways an adversary can use to install a rootkit [93] on a laptop.

The term road apple refers to an apple that is found on a road, tempting the finder

26

2.3. Integrated security model of the world

Figure 2.2: Road apple attack

to take it. In the IT world, the apple is usually an infected generic dongle (ex.

USB stick) with the logo of the organization left by the adversary in a social place

of the organization, such as a cafeteria. When an employee finds the dongle he

may be tempted to plug the dongle into his laptop [122]. In the rest of the chapter

we call this case road apple 1.

Another approach by the adversary to realize the road apple attack is through

direct interaction with the employee. For example, the adversary impersonates

higher level management and builds a trust relationship with the employee. The

adversary provides a fake identity and simulates an emergency, asking to send a

file he has on a dongle through the laptop of the employee. If the employee plugs

the dongle on the laptop, the dongle will install the rootkit without the employee’s

knowledge [12, 30, 31]. In the rest of the chapter we call this case road apple 2.

2.3 Integrated security model of the world

When an adversary tries to compromise a system, the adversary uses all avail-

able resources, which besides digital penetration include physical possession of

a device and usage of social means to acquire sensitive information. To model

the coldboot attack and physical tampering with devices, we need to be able to

model the tamper resistance of components in a laptop. We also need to present

the removal/addition of components in the laptop. The road apple attack, as many

other social engineering attacks [69] relies on activities occurring in the digital,

physical and social world. Thus, we need a model which presents movement and

roles, as well as physical and digital objects.

The digital, social and physical aspects are defined by Wieringa [104] and we

quote his definitions below:

The physical world is the world of time, space, energy and mass mea-

27

Chapter 2. Modeling the physical, digital and social domain

sured by kilograms, meters, second, Amperes, etc. The social world is

the world of conventions, money, commercial transactions, business

processes, job roles, responsibility, accountability, etc. structured in

terms of conceptual models shared by people. At the interface be-

tween the social and physical worlds we have the digital world which

consists of symbols that have a meaning for people.

A step towards understanding the security implications in an organization caused

by the mobility of assets and information as well as the social interactions be-

tween people, is to create a model that includes the digital, physical and social

aspect of the world. Implicitly, this topic is touched upon in the system require-

ments domain [57], where the user describes the environment in which the system

operates.

Here we provide requirements of an integrated security model of the world from

the digital, social and physical aspect, together with the basic building blocks the

model needs to include.

The requirements we want an integrated security model to achieve are:

1. The model should be capable of representing the data of interest.

2. The model should be capable of representing the physical objects in which
the data resides and the locations where the physical objects are stored.

3. The model should be capable of representing the roles a user can have.

4. The model should define the interactions between the data, physical objects
and the roles.

The first three requirements present the digital, physical and social aspect of the

world, while the last binds them together. Following the requirements and the

definitions of the physical, digital and social aspect, elements of interest in the

integrated security model are: data, physical objects, roles and interaction rela-
tions.

We use the attacks from the case study to provide focus of the analysis and show

how the above requirements present properties of real-life attacks. In Section 2.4

we use the same attacks to show how the inability of a model to satisfy a require-

ment leads to inability to present a specific attack from the case study.

From the digital aspect represented by the data, we believe that the integrated

model needs to present the data at rest as well as data in movement. The spa-

tial/temporal characteristic provides information about the movement of the ob-

jects which is needed to model the attacks presented in Section 2.2. To represent

28

2.4. Security models

Aspect Element Property

Digital Data Static, Dynamic

Physical Object Resistance, Spatial

Social Role Interaction, Transition

Table 2.1: Properties of interest for an integrated model

tampering with a device, the model should be capable of representing the physi-

cal properties of an object including the boundary of the object. From the social

aspect we are interested in the transition of one role to another, as well as the in-

teraction between roles. Through role interaction and role transition we can rep-

resent the impersonation of an adversary and adversary’s direct interaction with

an employee as presented in Section 2.2.2.

A model that will enable a security expert to represent the physical and social

security aspects in organizations will give the security expert better insight in the

threats and attack vectors, leading to an understanding of which low-level policies

are not aligned with the high-level policies.

To predict the behavior of a system over time we need a state based model. Schnei-

der [90] argues that a static model cannot enforce security policies because the

capability of a user can change over time. Goguen [48] presents a capability state

model to present dynamic changes in the system, and based on the changes of the

capability of a user, defines dynamic security policies. Goguen uses predicates

defined over the sequences of operations used to reach the current state, instead of

using a predicate on a single state.

In an integrated security model of the world, states or a sequence of states, should

be classified based on the properties we want to model. One example is distin-

guishing the difference between states that are possible in the real world and states

that are not. Another example is classification between states that cause violation

of a high-level policy and states that do not violate a high-level policy.

2.4 Security models

Motivated by the examples of attacks described in section 2.2 we did an exhaustive

literature search for models that are capable of presenting the attacks from the case

study. The most promising line of work comes from Probst et al. [84], and uses

29

Chapter 2. Modeling the physical, digital and social domain

a modification of the Klaim language [70]. In Chapter 3 we present the Klaim

language in greater detail and show how we improve upon it. In this section we

present a list of relevant formal models that use other formalism and present their

weaknesses. During the literature search we also found models that represent

informal models that use conceptual approach in describing of the three security

domains. They are shortly addressed in Section 2.5.

Most of the formal models we found focus on modeling the data from the digital

aspect (e.g. data flow) and only a limited number of models consider the location

of the data. To the best of our knowledge there is no integrated security model

which includes all three aspects (digital, physical, social), and thus there is no

model that can truthfully represent the security implications on data mobility in

dynamic organizations.

We focus on models from the computer science domain modeling a security prop-

erty of the system, such as privacy or confidentiality. TAM and Secure Tropos

(ST) (Subsection 2.4.1) are static and used in the software industry for generation

of threats for a specific software application. Then we move into dynamic, state

based security models (Subsections 2.4.3 and 2.4.4) that include mobility of the

components in the system. These dynamic models are all inspired by the ambient

calculus [23], for which we provide the basic structure. Later we explore how

the ambient calculus is extended to focus on different properties of the world in

two other security models. We analyze the characteristics of these models with

respect to the requirements presented in Section 2.4.5. A more detailed and tech-

nical elaboration of the conclusions is presented in Appendix A.

2.4.1 TAM and Secure Tropos

One of the first steps when looking at a security issue is to create a threat model [96].

To generate the threats, the threat model needs to provide a security model of the

system on which it runs the threat generation algorithm. Usually, the input of a

threat model is the security model of the system, and the output is a set of threats.

The model does not specify how these threats could happen (which makes the

model attack independent) but recognizes the existence of such threats. This set is

later used as an input for risk assessment and report generation. In the literature,

threat modeling focuses on applications and networks. The scientific commu-

nity has worked on a formalization of threat modeling [108, 29] and produced

algorithms for threat generation [72, 77] and sorting [28]. This led to a num-

ber of tools which partially automate the threat modeling and generation process

space [115, 120]. Here we consider TAM [115] which is a state of the art tool

30

2.4. Security models

used for internal threat generation and analysis in software development organi-

zations, as well as Secure Tropos, a formal model used for high-level presentation

of software requirements.

In Section 2.2.1 we used TAM to model the coldboot attack (Figure 2.1). Besides

being able to model data structures (OS and OS2) and data flow (the solid lines

between the objects) the tool also presents physical objects (RAM , CPU and

HDD) as well as roles (user1 and adversary). The addition in the model, where

the adversary takes the key from the RAM using the second operating system is

presented with the dashed line.

TAM considers the physical component and the role as static and the data as dy-

namic, allowing the TAM threat generation algorithm to focus on the flow of data.

Although this reasoning is understandable and valid in software modeling, in the

presented attacks TAM proves to be restrictive. TAM does not take into consid-

eration the possibility that a component can be removed, such as the RAM in the

coldboot attack nor that a component is mobile, such as the dongle in the road

apple attack.

TAM presents neither role interaction nor role transition. Because of the lack of

states, even with manipulation of the relationships and entities in the model, TAM

cannot present interaction between roles and role transition. The role in TAM is

used to describe the privileges over a component in an access control table, but

does not define transition between roles such as escalation of privileges between

a normal and an administrator role nor any interaction between roles, such as

delegation or separation of duty. As a result, TAM cannot present the road apple

attack where the adversary has direct interaction with the employee.

TAM cannot present physical properties of a component. A component is defined

through the service type the component provides and the data and roles the com-

ponent interacts with. Since TAM does not consider the component as a physical

object, the component’s resistance to physical attacks cannot be expressed in the

model.

We can change the meaning of the components to present the attacks from the case

study, but not without changing or blurring the relationship between the compo-

nents. We can ”attach” a new operating system to the RAM. As the number of

mobile components increases the number of such ”attachments” also increases,

degrading the model usability as well as blurring the meaning of the relationship

between components. Still TAM model ”attachments” are used in modeling the

coldboot attack as presented in Figure 2.1.

31

Chapter 2. Modeling the physical, digital and social domain

Figure 2.3: A floor plan and its tree representation [80]

2.4.2 Ambient calculus

Ambient calculus [23] provides an excellent apparatus for modeling a world with

mobile components. The calculus is capable of presenting spatial and temporal

properties of a component(with running processes inside) in the model. Ambi-

ent calculus serves as an inspiration for the state of the art security models that

consider mobility of components. The ambient calculus has been expanded into

typed ambient calculus [22], boxed ambient calculus [21] etc. All of these calculi

focus on a specific security property such as boundary interference [20].

Ambient calculus does not define the properties of an entity nor the relationship

between entities, making the calculus generic enough to present any model of in-

terest. The calculus presents a comprehensive theoretical framework for reasoning

about mobility. But, without additional formal naming convention and definition

of the properties of interest in the component, cannot be directly implemented in

any model on which mechanisms such as policies or threat generation algorithms

need to be applied.

Ambient calculus cannot present tampering with a device. In ambient calculus

data decides to leave the device or not based on the capability of the data, which is

not the case when an adversary tampers with a device. Although tamper resistance

can be presented through a stack of ambients, the manipulation of the stack cannot

be done at run time, because any rearrangement or removal of a layer requires a

dynamic change of the capabilities of the data inside.

Finally, ambient calculus is based solely on a containment relation. As pointed

out in the work of Pieters [80], containment based models cannot present neigh-

boring relationship between objects. For example, we cannot model a floor that

has neighboring rooms (Figure 2.3), or networks separated by firewalls.

32

2.4. Security models

Figure 2.4: Road apple using entities. The model of Scott can present the spa-

tial location of entities (blue arrows), but not the social interaction between them

(black arrow).

2.4.3 Model of Scott

Scott [91] builds a security model of the world by adding a spatial relationship

between the elements in the ambient calculus. Scott’s model is based on a build-

ing block called an entity. An entity is a spatial location. Every entity belongs to

only one of six defined sorts. To distinguish physical entities from digital enti-

ties, Scott defines a context, a physical/virtual machine capable of running code.

Scott’s model uses capabilities from ambient calculus (in/out) and renames the

capabilities depending on which entity uses the capability. If the entity is a person

moving between rooms, the capabilities are walk in/walk out. If the entity is a

person interacting with a laptop, the capability is pick up/put down. If the entity

is an agent moving between contexts, the capabilities are emit/receive.

To present tamper resistance of an entity, we can add multiple layers of protection

to the data by inserting additional entities. But the definition of the emit/receive
command teleports an entity from source address to destination address without

taking in account the layers in between, making the model oblivious to the tamper

resistance imposed by the device.

There is no social factor in the model of Scott. There is a sort person, but the

meaning is spatial. The only capability this entity has is to pick up or put down

a mobile entity. Through this we could present the coldboot attack, where the

person physically changes the location of the RAM as well as the first version

of the road apple attack. But the model cannot represent the direct interaction

between the adversary and the employee in the second version of the road apple

33

Chapter 2. Modeling the physical, digital and social domain

attack, where the adversary directly interacts with the employee and convinces the

employee to insert the dongle (Figure 2.4). Thus, the model cannot fully present

the road apple attack.

2.4.4 Model of Dragovic

Dragovic [41] presents a security model of the world by expanding Scott’s model

and focusing on exposure treats. The main building blocks are data object, which

presents a collection of data with equal sensitivity as determined by a security

policy and container, which is an ambient (digital or physical) containing a data

object or a lower level container. In a Dragovic model, the container has as a

boundary that protects the container or data object inside from the outside influ-

ences with variable degree of success. Every container propagates downwards

its own influences in addition to the influences the container inherits from the

parent container. Boundary transparency is defined based on the degree of pro-

tection the parent container offers to the child container. Dragovic uses class
(similar to Scott’s sort) to group elements. Another distinction is made by adding

a type to the container, which presents the behavior of the container when ex-

posed to an influence from the environment. Mobility of the data is presented by

four operations: enter, leave, migrate, which atomically binds the previous two

operators and state update, which is used to update the status of the attributes

of a container. The model presented by Dragovic [40, 41] besides considering

the spatial/temporal characteristics of the object, considers the object’s physical

properties, such as the object’s capability to resist influences from the surrounding

environment, making the model suitable for presenting the tamper resistance of a

device.

The model of Dragovic includes Scott’s model with the addition of the physical

property of the objects, as well as the definition of sensitivity of data, allowing

us to model tampering with a device and the coldboot attack to a level where all

elements are realistically presented. Figure 2.5 presents the spatial relationship of

the containers in the cooldboot attack. To model the coldboot attack, we define

the RAM as a container and the encryption key as a data object. The accessibility

of the RAM is defined by the RAM’s transparency in addition of the laptop’s

transparency. Before the coldboot attack, we consider the RAM as a container

with limited tamper resistance. After the RAM is removed from the laptop, the

tamper resistance of the RAM increases due to the degradation of the data. Thus,

we can successfully present the coldboot attack.

Dragovic does not define an object person, therefore there is no defined interaction

between a person and a container. By presenting the employee and the adversary

34

2.4. Security models

Figure 2.5: The coldboot attack using containers. Each container has a determined

transparency, allowing the modeling of tampering attacks. The lines between the

containers represent their spatial location.

as containers, we are able to present the movement of the dongle with the rootkit

from the adversary to the employee’s laptop. Yet, we are not able to present

the interaction between the adversary and the employee, where the employee is

convinced to insert the dongle. Thus, we cannot model the road apple attack with

direct interaction.

2.4.5 Comparison of the models

This section compares the analyzed modeling approaches. Table 2.6 presents the

objects and properties of the objects we are interested in the analyzed models.

From the presented results, we make the following observations. The ambient cal-

culus is formal and capable of presenting most of the properties of interest. Other

models impose restrictions on the model enabling them to focus on a specific area

of interest, making the models less general than ambient calculus. This prevents

the models to represent some of the properties of interest. TAM is incapable of

presenting physical or social properties, because the model focuses on software

representation and does not contain states. Scott and Dragovic cannot present role

transition and role interaction because they do not include any social element in

the model.

Table 2.7 provides an overview of the model’s ability to present tampering with a

physical device, the coldboot attack, as well as the road apple attack with indirect

35

Chapter 2. Modeling the physical, digital and social domain

Aspect ElementProperty TAM & ST Ambient

calculus

Scott Dragovic

static yes yes yes yes
Digital Data

dynamic yes yes yes yes

spatial/temp. no yes yes yes
Physical Object

resistance no no no yes

transitions no no no no
Social Role

interactions no yes no no

Figure 2.6: Ability of the models to present digital/physical/social elements

Name of attack TAM & ST Ambient calculus Scott Dragovic

Tampering no no no yes

Coldboot partially yes yes yes

Road apple 1 no yes yes yes

Road apple 2 no yes no no

Figure 2.7: Ability of the models to present the case study attacks

(road apple 1) and direct (road apple 2) interaction between the adversary and the

user.

Tampering with a device can be presented with the model of Dragovic because

the model can contain information about the property of a device. TAM does not

have this capability, and thus is not able to present the tampering. The model of

Scott can use multiple layers to represent resistance, but the teleporting ability of

data makes any attempt to represent resistance obsolete. The operators in ambient

calculus do not support teleporting, enabling the presentation of the tamper resis-

tance through multiple layers. Yet, the capabilities of the ambient cannot change

dynamically based on the change of the layer structure, preventing the complete

presentation of tampering with data.

We are able to present the spatial movement of the dongle from the adversary to

the employees laptop, but are not able to present the social interaction between the

adversary and the user, where the adversary convinces the user to plug the dongle.

This is the reason why Scott and Dragovic can only partially model the road apple

with direct interaction.

36

2.5. Conceptual models

2.5 Conceptual models

Jiang et al. [60, 59] present a data structure for the privacy issues in the ubiq-

uitous computing through data structures called information spaces. The model

of Jiang et al. focuses on presenting social groups and activities, which is a ma-

jor improvement with respect to the previously introduced security models, but

the definition of the model is informal, making the model open for interpretation.

Prayogi et al. [83] provide an access control framework for selective role transi-

tion based on the change of the context in which the system resides. However, the

role transitions are not formally defined. In the social and business fields, Hart-

mann et al. [54] provide informal model of user interaction. The model is used for

optimizing profit rather than investigating security implications.

2.6 Conclusion

We analyze the capability of state of the art security models to present the treats

arising from physical and digital mobility as well as social interaction in organi-

zations. We show that none of the state of the art security models simultaneously

consider the data mobility and social interaction to a satisfactory extent. Soft-

ware modeling tools, like Microsoft’s TAM, consider the physical infrastructure

and roles to be static and this makes it hard to present dynamic changes in the

system. Security models for ubiquitous computing are state based, but focus on

spatial/temporal characteristics and fail to recognize social interactions, which are

vital for social engineering threats. As a result, we conclude that none of the

presented state of the art security models effectively describes the physical and

social aspect of security. Thus, these models cannot identify the potential security

threats caused by misalignment of low-level policies with high-level policies.

The information omnipresence and social interactions in organizations shift the

stress from mainly digital attacks to a combination of digital, physical and social

attacks. To cope with the threats, the chapter presents the requirements for an

integrated state based model. The goal of the proposed requirements is to aid in

defining a model of the world from all three aspects, digital, physical and social

and realistically present the possible attacks. The chapter identifies the objects of

interest from all three aspects and presents an initial classification of the properties

affecting the security of the identified objects.

In the following chapter we define a formal security model that satisfies the re-

quirements provided here and defines the interactions between the identified ob-

jects, based on the properties of the objects.

37

Chapter 2. Modeling the physical, digital and social domain

38

Chapter 3

Portunes∗
Representing multi-domain behavior

In this chapter, we present Portunes, a framework that incorporates

three security domains: (1) the security of the computer system itself

(the digital domain), (2) the security of the location where the system

is deployed (the physical domain) and (3) the security awareness of

the employees who use the system (the social domain). The frame-

work is able to present low-level policies as well as behaviors that

span the three domains.

The Portunes framework can be used by auditors to assure the man-

agement that the low-level policies are complete with respect to the

high-level policies. The framework can be also used to assist penetra-

tion testers by automatically generating ”what if” scenarios, that can

be used as parts of the tests. We explore these usages of the frame-

work in chapter 4 and chapter 5.

We show how the framework can be used to describe malicious be-

havior of an insider, who uses actions that span the three domains to

achieve her goal. We formalize a variation of the road apple attack as

a running example, where the insider uses the trust from a colleague

to obtain the secure data.

∗This chapter is a minor revision of the paper ”Portunes: representing attack scenarios spanning

through the physical, digital and social domain” [2] published in the Proceedings of the Joint

Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of

Security (ARSPA-WITS’10), pages 112-129, Springer Verlag, 2010

39

Chapter 3. Portunes: Representing multi-domain behavior

3.1 Introduction

Malicious insiders are a serious threat to organizations. Motivated by greed or

malice, insiders can disrupt services, modify or steal data, or cause physical dam-

age to the organization. Protecting assets from an insider is challenging [110]

since insiders have knowledge of the security policies in place, have certain privi-

leges on the systems and are trusted by colleagues. An insider may use the knowl-

edge of the security policies to avoid detection and use personal credentials or

social engineer colleagues to carry out an attack. Securing the environment from

a malicious insider requires (1) aligning the low-level policies with the high-level

policies and (2) checking if an insider can violate a specific high-level policy.

Most current formal models for modeling insider threats [87, 99, 52] assume that

the insider uses only digital means to achieve an attack. Therefore, these models

do not look into mobility of people and devices nor social interactions between

people, and focus only on modeling the security of a network or a host. For

example, there is a lot of research that focuses on modeling and analyzing network

and host configurations to generate, analyze and rank attack scenarios using attack

graphs [102, 67, 103, 101, 66].

Assuming that the insider uses only digital means to achieve an attack leaves an

essential part of the environment of interest not captured in the security models.

Indeed, a study performed by the National Threat Assessment Center in the US

(NTAC) [86] shows that 87% of the attacks performed by insiders require no tech-

nical knowledge and 26% use physical means or the account of another employee

as part of the attack. Thus, a whole family of attacks, digitally-enabled physi-

cal attacks and physically-enabled digital attacks [38], in which the insider uses

physical, digital and social means to compromise the asset cannot be presented

nor analyzed formally.

The contribution of this chapter is Portunes1, a framework which integrates all

three security domains in a single environment, thereby enabling the analysis of

multi-domain behavior. The Portunes framework consists of a graph and a lan-

guage, which can describe an environment at a different level of abstraction. The

graph is a visual representation of the environment focusing on the relations be-

tween the three security domains. It provides a conceptual overview of the envi-

ronment that is easier to understand by the user. The language is at a relatively low

1After Portunes, the Roman god of keys

40

3.2. Related work

level of abstraction, close to the enforcement mechanisms. The language is able to

describe the low-level policies defined by the security departments as predicates

and the behaviors that span across the three domains as process definitions.

The rest of the chapter is structured as follows. Section 3.2 gives an overview of

related work contributing to the design of Portunes. Section 3.3 formalizes the

Portunes graph and Section 3.5 formalizes the Portunes language. Section 3.6

concludes the chapter.

3.2 Related work

The design of the Portunes framework is influenced by several research directions,

such as insider threat modeling, physical modeling and process calculi. This sec-

tion lists several papers which influenced the design of Portunes and describes

how Portunes extends or deviates from them.

Dragovic et al. [41] are concerned with modeling the physical and digital domain

to determine data exposure. Their model defines a containment relation between

layers of protection. Data security is determined not by access control policies,

but by the number of layers of protection above the data and the confidentiality

provided by each layer. The Portunes framework uses a similar relation to present

the location of elements, but uses explicit access control policies to describe secu-

rity mechanisms.

Scott [91] focuses on the mobility of software-agents in a spatial area and usage

policies that define the behavior of the agents depending on the locality of the

hosting device. The mobility of the agents is restricted through edges on a graph.

The Portunes framework adds semantics to the graph structure by giving meaning

to the nodes and edges and defines invariants enforced directly into the semantics

of the language.

Mathew et al. [66] use capability acquisition graphs to describe the physical struc-

ture of a building. The nodes in the graphs are static, and the graph can present

the progress of the insider in the graph. In our solution the structure of the graph

evolves as the attack progresses, and the insider can interact with other employees

to obtain additional capabilities.

Klaim [70] is a process calculus for agent interaction and mobility, consisting of

three layers: nodes, processes and actions. There are several Klaim dialects, in-

cluding μKlaim [50], OpenKlaim [19] and acKlaim [84]. The goal of the acKlaim

language, which is closest to our work, is to present insider threats by combining

41

Chapter 3. Portunes: Representing multi-domain behavior

the physical and digital security domain. Mobility is presented by remote eval-

uation of processes. The Portunes language builds upon these Klaim dialects.

Firstly, the actions for mobility and embedding of objects (login, logout) are sim-

ilar to OpenKlaim. Secondly, the policies expressed in the Portunes language are

similar to acKlaim and μKlaim. However, in the Portunes language mobility is

represented by moving nodes rather than evaluating processes. Finally, the Por-

tunes language lacks tuple spaces which are present in all other Klaim variants.

The tuples in the physical and digital world are completely replaced by the con-

tainment sets. The social world is presented through the low-level policies, thus

no tuples are needed. The absence of tuple spaces reduces the number of possible

process definitions, allowing their automatic generation.

3.3 Portunes

This section presents the Portunes framework. We first present the requirements

which Portunes needs to satisfy and the motivation behind some of the design

decisions. Based on the requirements, we formally define the Portunes graph and

the Portunes language. To show the expressiveness of the framework, we use a

variant of the road apple attack as an example of a malicious behavior.

3.3.1 Requirements and motivation

The three security domains focus on different aspects of security. Physical se-

curity restricts access to buildings, rooms and objects. Digital security is con-

cerned with access control on information systems. Finally, security awareness

of employees focuses on resistance to social engineering, and is achieved through

education of the employees.

Representing all three security domains in a single formalism is challenging.

Firstly, the appropriate abstraction level needs to be found. A too low level of

abstraction for each domain (down to the individual atoms, bits or conversation

dynamics) makes the representation complicated and unusable. However, ab-

stracting away from physical spaces, data and relations between people might

omit details that contribute to an attack. Thus, a model integrating multiple secu-

rity domains needs to be expressive enough to present the relevant details of an

attack in each security domain. In chapter 2, we provided the basic requirements

for an integrated security model to be expressive enough to present detailed at-

tacks. Briefly, an integrated security model should be able to present the data of

42

3.4. The Portunes graph

Spatial node

Physical node

Digital node

Spatial layer

Object layer

Digital layer

Figure 3.1: Graphic presentation of elements in Portunes

interest, the physical objects in which the data resides, the people that manipulate

the objects and the interaction between data, physical objects and people.

Secondly, the domains have different properties making them hard to integrate.

For example, mobility of digital data is not restricted by its locality as is the case

with objects in the physical domain. Likewise, physical objects cannot be repro-

duced as easily as digital data. An additional requirement for Portunes is to restrict

interactions and states which are not possible in reality. For example, it is possi-

ble to put a laptop in a room, however, putting a room in a laptop is impossible;

a person can move only to a neighboring location, while data can move to any

location; data can be easily copied, while the reproduction of a computer requires

assembling of other objects or materials.

3.4 The Portunes graph

To present the different properties and behavior of elements from physical and

digital security, the Portunes graph stratifies the environment of interest in three

layers: spatial, object and digital. The spatial layer presents the facility of the

organization, including rooms, halls and elevators. The object layer consists of

objects located in the facility of the organization, such as people, computers and

keys. The digital layer presents the data of interest. Stratification of the environ-

ment in three distinct layers allows specification of actions that are possible only

in a single layer (copying can only happen for digital entities) or between specific

layers (a person can move data, but data cannot move a person).

A Portunes graph abstracts the environment of an organization in a stratified graph

and restricts the edges between layers to reflect the neighbor and containment

43

Chapter 3. Portunes: Representing multi-domain behavior

relations that occur in reality. A node abstracting a location, such as an elevator

or a room, belongs to the spatial layer L and it is termed a spatial node. A node

abstracting a physical object, such as a laptop or a person, belongs to the object

layer O and it is termed an object node. A node abstracting data, such as an

operating system or a file, belongs to the digital layer D and it is termed a digital

node. The edges between spatial nodes denote a neighbor relation and all other

edges in the graph denote a containment relation. The ontology used in Portunes

is given in Figure 3.2. An edge (n,m) between two spatial nodes means n is a
neighbor of m. This is a symmetric relation where the direction of the edge is not

important. For all other nodes, an edge (n,m) means that node n contains node

m; this is an asymmetric relation.

layer node edge

spatial location neighbors

contains

object physical object contains

contains

digital data contains

Figure 3.2: The ontology of a Portunes graph

The above statements are illustrated in Figure 3.1 and formalized in the following

definition.

Definition 12. Let G = (Node,Edge) be a directed graph and D : Node →
Layer a function mapping a node to Layer = {L,O,D}. A tuple (G,D) is a
Portunes graph if it satisfies the following invariants I(G,D):

1. Every object node can have only one parent.
∀n ∈ Node : D(n) = O → indegree(n) = 1

2. One of the predecessors of an object node must be a spatial node.
∀n ∈ Node : D(n) = O → ∃m ∈ Node : D(m) = L ∧ ∃〈m,, n〉;
where 〈m,, n〉 ∈ Edge+ denotes a finite path from m to n, and Edge+

is a finite set of finite paths.

3. There is no edge from an object to a spatial node.
�(n,m) ∈ Edge : D(n) = O ∧ D(m) = L

4. There is no edge from a digital to an object node.

44

3.4. The Portunes graph

�(n,m) ∈ Edge : D(n) = D ∧ D(m) = O

5. A spatial and a digital node cannot be connected.
�(n,m) ∈ Edge : (D(n) = D ∧ D(m) = L) ∨ (D(n) = L ∧ D(m) = D)

6. The edges between digital nodes do not generate cycles.
�〈n, ...,m〉 ∈ Edge+ : D(n) = ... = D(m) = D ∧ n = m

The intuition behind the invariants is as follows. An object node cannot be at more

than one place, thus an object node can have only one parent (1). An object node

is contained in a known location (2). An object node cannot contain any spatial

objects (3) (for example, a laptop cannot contain a room) nor can a digital node

contain an object node (4) (for example, a file cannot contain a laptop). A spatial

node cannot contain a digital node and vice versa (5), and a digital and object

nodes cannot contain itself (6) and Theorem 1. Edges between spatial nodes rep-

resent a neighborhood relation which is a reflexive property. However, the edges

between object and between digital nodes represent a contain relation, which is

not reflexive. For example, it should not be possible for a person to contain a bag,

which in turn contains the same person.

Theorem 1. A Portunes graph (G,D), where G = (Node, Edge), can have cy-
cles only in the spatial layer:
∃〈n, ...,m〉 ∈ Edge+ : n = m → D(n) = ... = D(m) = L

Proof. The theorem follows from three properties, which we prove in turn:

1. There are no cycles between layers.

2. There are no cycles in the object layer.

3. There are no cycles in the digital layer.

1. There are no cycles between layers

� ∃〈n0...ni...nk〉 : n0 = nk ∧ D(n0) �= D(ni)
Lets assume that such a cycle exists:

∃〈n0...ni...nk〉 : n0 = nk ∧ D(n0) �= D(ni)
Thus, there are at least two edges in the graph which connect nodes from

different layers:

∃(nj−1, nj), (nl, nl+1) ∈ Edge : D(nj−1) �= D(nj) ∧ D(nl) �= D(nl+1) ∧
D(nj−1) = D(nl+1) ∧ D(nj) = D(nl)
From the invariants 3, 4, 5 (tabulated in Table 3.1) follows that such a pair

of edges does not exist.

45

Chapter 3. Portunes: Representing multi-domain behavior

Layer 1 (L1) Layer 2 (L2) Edge from L1 to L2 Edge from L2 to L1

L O + - (invariant 3)

L D - (invariant 5) - (invariant 5)

O D + - (invariant 4)

Table 3.1: Invariants 3,4,5 forbid any cycles between layers.

2. There are no cycles in the object layer.

� ∃〈n, ...,m〉 : D(n) = ... = D(m) = O ∧ n = m
Lets assume such a cycle exists:

∃〈n, ...ni−1, ni...,m〉 : D(n) = ...D(ni) ... = D(m) = O ∧ n = m.

From invariant 2, for the node ni−1 exists a spatial node m, such that there

is a path between m and ni−1, ∃k ∈ Node : D(k) = L ∧ ∃〈k,n′
i−1, ni〉.

It follows there are two edges to ni, ∃(n′
i−1, ni), (ni−1, ni).

If n
′
i−1 �= ni−1 there is a contradiction with invariant 1. Otherwise D(n

′
i−1) =

O, and the analysis is repeated for the path 〈k,n′
i−1〉. Because 〈k,n′

i−1〉
is finite, at one point the path reaches a spatial node, and n

′
i−1 �= ni−1. This

again contradicts with invariant 1. Thus, such cycle does not exist.

3. There are no cycles in the digital layer.

� ∃〈n, ...,m〉 : D(n) = ... = D(m) = D ∧ n = m
This follows directly from invariant 6.

Example: Road apple attack To show how Portunes can be used to represent the

three domains and represent behaviors across the domains, we use the example of

the road apple attack [122, 30, 31] which we introduced in Chapter 1. In an insider

version of the road apple attack, the insider may abuse the trust of a colleague and

convince the colleague to take the dongle. Instead of the competitor spreading

multiple infected dongles around the vicinity of the employee’s working place,

in the insider version of the road apple attack, the insider social engineers the

employee. In this chapter we will formalize the attack in the following steps.

First, the insider convinces the employee to take the dongle by abusing her trust

(social domain). Then, the employees goes to a server in a restricted area and

plugs in the dongle (physical domain). Finally, the malicious software from the

dongle transfers the sensitive data to a remote server (digital domain).

To describe the attack, the environment in which the behavior takes place needs

to include information from all three security domains. Concerning physical se-

curity, the organization has a restricted area where a server with sensitive data

resides. Additionally there is a public area where employees can socialize. Re-

46

3.5. The Portunes language

D(hall) = D(secureRoom) = D(world) = L
D(remoteServer) = D(insider) = D(employee) =
D(secureServer) = D(dongle) = O
D(serverData) = D(rootkit) = D

Figure 3.3: The function D for the road apple attack environment

1 world

2 hall

3

4

secureRoom

remoteServer

5 insider

6 employee

7 secureServer

8 dongle

9 rootkit

10 serverData

4

3

65 7

8

9

21

10

Figure 3.4: Graph of the road apple attack environment

garding the digital domain, the data on the server can be accessed only internally.

The security awareness of the employees is such that they trust each other enough

to share office material (for example: CDs and dongles).

The segregation of the nodes among the layers is presented in Figure 3.3. The

nodes hall, secureRoom and world are spatial nodes, serverData and rootkit are

digital nodes. All other nodes are object nodes. The Portunes graph is visually

presented in Figure 3.4. The spatial nodes are presented as pentagons, the object

nodes as circles and the digital nodes as squares. The edges in the graph present

the relationship between the nodes. For example, the hall is neighboring the secure

room and the secure room contains a secure server which in turn contains server

data.

In Section 3.5 we define the language that formally specifies the environment of

interest and in Section 3.5.2 we will revisit the example and show how the road

apple attack takes place using the formal specification. In Chapter 5 we will show

how to present properties in the road apple example formally.

3.5 The Portunes language

In the previous section, we defined a graph-based approach to present the facilities

of an organization, the objects in a facility and the data of interest. The Portunes

graph represents the environment on a conceptual level, and compared to the lan-

guage, it provides simplified presentation of the environment to the user. In this

47

Chapter 3. Portunes: Representing multi-domain behavior

section we introduce the Portunes language. The language formally describes the

environment and makes it more suitable to describe and analyze the enforcement

mechanisms as well as to formally specify the interaction between the nodes. The

language consists of nodes, processes and actions, where a node in the Portunes

language represents a node in the Portunes graph.

The language captures two interactions, mobility and delegation. By making all

nodes first class citizens, every node can move. For example, an object node

representing an insider can move through the organization and collect keys, which

increase the initial privileges of the insider. Similarly, a spatial node representing

an elevator can move between floors in a building. In the Portunes language, a

delegator node can delegate a task to a delegatee node. By delegation here we

refer to the act of granting the delegatee additional privileges to carry out a task

on behalf of the delegator.

The above two interactions, mobility and delegation, are restricted by the invari-

ants from Definition 12 and by the low-level security policies associated with each

node. Policies on nodes from the spatial and object layer represent the physical

security. These policies restrict the physical access to spatial areas in the facility

and the objects inside the spatial areas. Policies on nodes from the digital layer

represent the digital security of the organization and focus on access control on the

data of interest. In the Portunes language people can interact with other people.

Policies on people give the social aspect of the environment, or more precisely,

they define under which circumstances a person trusts another person.

3.5.1 Overview of Klaim

The Portunes language is inspired by the Klaim family of languages. Klaim (Ker-

nel Language for Agent Interaction and Mobility) is an experimental kernel pro-

gramming language designed to model and program distributed concurrent ap-

plications with code mobility [70]. The syntax of Klaim is presented in Figure

3.5.

Klaim relies on the concept of a distributed tuple space. A tuple space is a multiset

of tuples. A tuple t is a container of information which can be either an actual

value such as an expression e, process P , or a locality �, or a formal field such as

a value variable !x, process variable !X or locality variables !u. An example of a

tuple is: (5, ”person”, !var), where 5 and ”person” are expressions and !var is a

value variable. Tuples are anonymous and Klaim uses pattern matching to select

tuples from a tuple space.

A node contains one tuple space and processes. Nodes can be identified through

48

3.5. The Portunes language

N ::= Node

| 0 Empty net

| s ::ρ P Single node

| N1 ‖N2 Net composition

P ::= Process

| nil Null process

| act.P Action prefixing

| P1 + P2 Choice

| P1|P2 Parallel composition

| X Process variable

| A〈P̃ , �̃, ẽ〉 Process invocation

act ::= out(t)@� | in(t)@� | read(t)@� | eval(P)@� | newloc(u)

t ::= e | P | � | !x | !X | !u | t1, t2
Figure 3.5: Syntax of the Klaim language [70]

two types of addresses: sites s and localities �. Sites are absolute identifiers

through which nodes can be uniquely identified within a net and localities are

symbolic names for nodes and have a relative meaning depending on the node

where they are interpreted. Localities are associated with sites through allocation

environments ρ, represented as partial functions on each node.

Klaim processes may run concurrently and can perform five basic operations over

nodes. Three of them, in(t)@�, read(t)@�, out(t)@� are used to manipulate the

tuples, newloc(u) creates a new node and eval(P)@� spawns a process P for

execution at node �.

3.5.2 Syntax of the Portunes language

As with other members of the Klaim family, the syntax of the Portunes language

consists of nodes, processes and actions. The Portunes language lacks the tuple

spaces and the actions associated with tuple spaces, which are present in the Klaim

family of languages, and focuses on the connections between nodes. This is be-

cause connectivity is the main interest from the perspective of security modeling.

The Portunes language is also simplified by removing variables and localities,

because our goal is to automatically generate programs rather than program them.

49

Chapter 3. Portunes: Representing multi-domain behavior

N ::= Node

| l ::δs P Single node

| N1 ‖N2 Net composition

P ::= Process

| nil Null process

| P1 | P2 Process composition

| al.P1 Action prefixing

a ::= Action

| login(l) Login

| logout(l) Logout

| logout’(l) Logout’

| eval(P)@l Spawning

Figure 3.6: Syntax of the Portunes language

The syntax of the Portunes language is shown in Figure 3.6. A single node l ::δs P
consists of a name l ∈ L, where L is a universe of node names, a set of node names

s ∈ 2L, representing nodes that the node l contains , a low-level security policy

δ and a process P . The relation between the Portunes graph and the expressions

in the Portunes language is intuitive: a node l in the graph represents a node with

name l in the language, an edge (l, l′) in the graph connects l to a node name

l′ ∈ s of the node l ::δs P . Thus, the node name uniquely identifies the node

in the graph, while the set s defines which other nodes the node contains or is a
neighbor of. These two relations identify the relative location of each element in

the environment. A net is a composition of nodes.

A process P is a composition of actions. Namely, nil stands for a process that

cannot execute any action and al.P1 for the process that executes action a using

privileges from node l ∈ L and then behaves as P1. The label l identifies a node

from where the privileges originate, and it is termed the origin node. The structure

P1|P2 is for parallel composition of processes P1 and P2. A process P represents a

task. A node can perform a task by itself or delegate the task to another node. Re-

cursive and mutually recursive process definitions are not allowed in the Portunes

language. Thus, every behavior described using the language has to be finite.

An action a is a primitive which manipulates the nodes in the language. There

are four primitives, login(l), logout(l), logout′(l) and eval(P)@l. The actions

login(l) and logout(l) provide the mobility of a node, by manipulating the set

s. The action logout′ restricts in the mobility of a node by checking whether the

50

3.5. The Portunes language

node is allowed to move, but does not manipulate the set s. The action eval(P)@l
delegates a task P to a node l by spawning a process in node l.

Notation To simplify the representation of processes, the nil at the end of non-

empty processes is omitted. For example, instead of writing the process as:

logout(hall)employee.login(secureRoom)employee.nil, we write the process as:

logout(hall)employee.login(secureRoom)employee. If the process has multiple ac-

tions from the same origin, then we put the origin node at the end of the process

rather than after each action. The process from the above example will be repre-

sented as: [logout(hall).login(secureRoom)]employee.

Example: Road apple attack (continued)

For a node representing a room, secureRoom ::δs nil, the low-level policy δ
defines the conditions under which other entities can enter or leave the secure

room. The set s contains the names of all objects that are located in the room

and the names of the locations neighboring the room. Let an insider and an em-

ployee be in a hall hall ::δ{insider, employee, secureRoom} nil which is neighboring

the secure room. An insider delegating a task to the employee is: insider ::δs
eval(P)@employeeinsider where P is a process denoting the task, employee is

the node to which the task is delegated and the label insider is the origin node.

An employee entering the secure room as part of the task delegated from an in-

sider is presented through employee ::δs login(secureRoom)insider.P ′, while an

employee leaving the room employee ::δs logout(secureRoom)insider.P ′′. This

example shows that the actions login and logout are abstractions of objects leav-

ing or entering locations. The same actions can be used to specify objects being

put into or removed from other objects. To keep the level of abstraction suffi-

ciently high and consistent with the constructs presented by Bettini et al. [19],

the action names are generic rather than named specifically, such as ”put/take” or

”enter/leave”.

An origin node can grant a set of capabilities C = {ln, lt, e} to another node,

where ln is a capability to execute the action login, lt to execute the action logout
or logout′ and e to execute the action eval. Which capabilities the origin node

can grant depends on its identity, location and credentials. The low-level secu-

rity policy δ is a function δ : (L ∪ {⊥}) × (L ∪ {⊥}) × 2L → 2C . The first

and the second parameter denote identity based access control and location based

access control respectively. If the identity or the location does not influence the

policy, it is replaced by ⊥. The third parameter denotes credential based access

control, which requires a set of credentials to allow an action. If a policy is not

51

Chapter 3. Portunes: Representing multi-domain behavior

affected by credentials, the third parameter is an empty set. A policy can present

a situation where: 1) only credentials are needed, such as a door that requires a

key (⊥,⊥, {key}) �→ {ln}, 2) only the identity is required, such as a door that

requires biometrics information (John,⊥, ∅) �→ {ln}, or 3) only the location is

required, such as data that can be reached only locally (⊥, office, ∅) �→ {ln}.

The low-level policy supports combinations of these attributes, such as a door

requiring biometrics and a key (John,⊥, {key}) �→ {ln}. The policies focus

on the allowed action, not of the content of the action. For example, the policy

(insider,⊥, ∅) → {ln}, at a node employee, states the employee trusts the in-

sider sufficiently to accept any object from her. The least restrictive policy that

can be used is: (⊥,⊥, ∅) �→ {ln, lt, e}.

We introduce types on nodes to define the spatial, object and digital layer on

the nodes in the language. Typing also allows us to avoid impossible contain-

ment relationships between nodes from the same layer, such as a node contain-

ing itself. Each node has a type t ∈ T , where T is a finite partially ordered

set defined by the relation ��ln. The function T maps a node to its type T :
N → T . The relation ��ln provides ordering between nodes based on their

type. As a convention, we write types with a capital first letter. For the road ap-

ple example, T is defined as T = {Room,Person}, and the ordering relation as

��ln= {(Room, Person)}. The mapping between the nodes and their types is:

T (secureRoom) = T (hall) = Room, T (employee) = T (insider) = Person.

The ordering is not transitive: For example, a room can contain a dongle and a

dongle can contain digital data. But, the room cannot contain the digital data.

Also, the ordering is not reflexive: a dongle might not be able to contain a dongle,

nor an insider can contain an employee. The only assumption on ��ln is that it

does not invalidate invariant 7 in Definition 12, or put differently, the relation does

not allow cycles between nodes in the digital layer.

Example: Road apple attack (continued)

In section 3.4 we introduced the Portunes graph of the environment where the road

apple attack takes place. We defined the relation between the elements through

a graph and their stratification in the graph through the function D. Now, we

additionally define the ��ln relation and the low-level policies on each of the

nodes.

Figure 3.7 presents the environment as a net composition. The representation

contains detailed information about the low-level policies in place, making them

suitable for analysis. For example, the node world has no processes (nil), con-

tains the remote server, the insider and is neighboring the hall. The node also has

one low-level policy (⊥,⊥, ∅) �→ {ln, lt}, which means every node is allowed

52

3.5. The Portunes language

world ::
(⊥,⊥,∅) �→ {ln,lt}
{remoteServer, insider, hall} nil

|| hall ::
(⊥,⊥,∅) �→ {ln,lt}
{employee, secureRoom} nil

|| secureRoom ::
(employee,⊥,∅) �→ {ln,lt}
{secureServer} nil

|| remoteServer ::
(⊥,⊥,∅) �→ {ln}
{} nil

|| insider ::
(⊥,⊥,∅) �→ {ln,lt,e}
{dongle} P1

|| employee ::
(insider,⊥,∅) �→ {ln} ; (employee,⊥,∅) �→ {ln,lt,e}
{} P2

|| secureServer ::
(⊥,secureRoom,∅) �→ {ln,lt} ; (⊥,secureServer,∅) �→ {ln,lt}
{serverData} nil

|| dongle ::
(⊥,⊥,∅) �→ {e} ; (dongle,⊥,∅) �→ {ln,lt}
{rootkit} P3

|| rootkit ::
(dongle,⊥,∅) �→ {ln,lt,e}
{} P4

|| serverData ::
(⊥,secureServer,∅) �→ {e}
{} nil

Figure 3.7: The road apple attack environment in the Portunes language

to enter and exit the area that is out of the company premises. The policy at em-

ployee (employee,⊥, ∅) → {ln, lt, e} states the employee will accept all actions

originating from herself. Removing this policy would prevent the node executing

any action using its own privileges.

To reduce the number of nodes, the majority of the policies presented here are

identity based. For example, the policy (employee,⊥, ∅) → {ln, lt} on secureRoom
requires the biometrics of the employee to identify itself when entering and leav-

ing the room. In a less secure environment, the policy can be replaced with

(⊥,⊥, ∅) → {lt}, (⊥,⊥, {key}) → {ln} meaning that everyone can leave the

room, but a person containing a key can enter.

The processes P1, P2, P3 and P4 describe intended behavior of the nodes. In

Section 3.5.5 we show how these processes can describe a behavior that represents

the road apple attack and in Chapter 4 generate them automatically.

The available types are T = {Space, Person, Server, ItObject,Data}. The

mapping and the Hasse diagram are given in Figure 3.8 and Figure 3.9. The

53

Chapter 3. Portunes: Representing multi-domain behavior

T (world) = T (hall) = T (secureRoom) = Space,

T (employee) = T (insider) = Person,

T (remoteServer) = T (secureServer) = Server,

T (rootkit) = T (serverData) = Data,

T (dongle) = ItObject.

Figure 3.8: Type definition of the nodes

ItObject

Person

Space

Server

Data

Figure 3.9: The Hasse diagram of the types of the nodes

ordering relation is:

��ln={(Space, Person),(Space, Server),(Space, ItObject),(Person, ItObject),
(Server, ItObject), (Person, Server), (ItObject,Data), (Server,Data)}

A net N is a formal representation of the environment. A net N , together with the

mapping functions D, ��ln on its nodes presents a single state of the environment

and the processes P represent intentions of the nodes.

3.5.3 Auxiliary functions

Having defined the behavior of nodes using the three primitive actions, login,

logout and eval, we now look at the context where these actions can be executed.

A node l ::δs al
′
.P can be restricted in executing an action a from an origin node

l′ to a target node for four reasons: (1) the origin node might not have sufficient

privileges, (2) execution of an action invalidates the invariants in Definition 12,

(3) the target node might not be in the vicinity of the node l or (4) the target

node is not physically able to contain the node. This section defines the auxiliary

functions for a given net N , which take care of these restrictions. The auxiliary

functions are defined in Figure 3.10 and are used in the operational semantics of

the language.

54

3.5. The Portunes language

grant(lo, δt, a) = ∃k1, k2 ∈ L ∪ {⊥}, ∃K ∈ P(L) : a ∈δt(k1, k2, K) ∧
(k1 = lo ∨ k1 = ⊥)︸ ︷︷ ︸

(1)

∧ (k2 ∈ parentsN(lo) ∨ k2 = ⊥)︸ ︷︷ ︸
(2)

∧(K ⊆ childrenN(lo)︸ ︷︷ ︸
(3)

),

where parentsN(lo) = { lpo| lpo ::δpospo R ∈ N ∧ lo ∈ spo}
and childrenN(lo) = so such that lo ::

δo
so R ∈ N

lt�ln l=

⎧⎨
⎩

false iff (D(lt)=D∧(D(l)=O∨D(l)=S)∨
(D(lt)=O∧D(l)=S) ∨ (D(lt)=S∧D(l)=D)

T (lt)��lnT (l) otherwise

l �e lt = (D(l) �= L ∧ D(lt) �= L)︸ ︷︷ ︸
(4)

∧¬(D(l) = D ∧ D(lt) = O)︸ ︷︷ ︸
(5)

∧ (lt ∈ childrenN(l)︸ ︷︷ ︸
(6)

∨(∃lp ::δpsp R ∈ N : l ∈ sp ∧ lt ∈ sp︸ ︷︷ ︸
(7)

) ∨ D(lt) = D︸ ︷︷ ︸
(8)

)

Figure 3.10: Auxiliary function grant and � relations

The grant function checks if an origin node lo has sufficient privileges to exe-

cute an action a on a target node with low-level policy δt. The first parameter is

the name of the origin node lo, the second parameter is the low-level policies on

the target node δt and the third parameter is a label of an action a. A node can

execute an action depending on the identity lo of the origin node (1), its location

parents(lo) (2) or the keys children(lo) it contains (3). Note that the value of

grant depends solely of the origin node, not the node executing the process.

The relation lt �ln l states that a node lt can contain a node l. The goal of this

relation is to ensure the invariants 3-6 in Definition 12 are satisfied during the net

evolution. From the relation we see that a digital node cannot contain a spatial or

a physical node, an object node cannot contain a spatial node and a spatial node

cannot contain a digital node.

The ordering relation l �e lt states that node l can delegate a task to node lt by

means of spawning a process. The relation restricts delegation of tasks between

nodes depending on the layer a node belongs to and the proximity between nodes.

An object node can delegate a task to a digital node or another object node, while

a digital node can delegate a task only to another digital node. Thus, spatial nodes

cannot delegate tasks, nor can a task be delegated to spatial nodes (4), and digital

nodes cannot delegate tasks to object nodes (5). Furthermore, a non-digital node

can delegate a task only to nodes it contains (6) or nodes that are in the same

55

Chapter 3. Portunes: Representing multi-domain behavior

location (7). In digital nodes the proximity does not play any role in restricting

the delegation of a task (8). The decision (8) assumes the world is pervasive

and digital nodes can delegate tasks from any location as long as they have the

appropriate privileges.

The expressions from Figure 3.10 focus on the relation between nodes. The grant
function provides the security constraints in the language based on the location

and identity nodes, while the �ln, ��ln and �e relations provide non-security

constraints derived from the layer the nodes belong to and their location. In ad-

dition, we put a restriction on the processes inside a node, to distinguish tasks

originating from a single node. We call such processes simple processes, and de-

fine an additional auxiliary function origin, which helps to determine if a process

is a simple process.

Definition 13. Let origin : Proc → 2L be a function which returns all the action
labels of a given process.

origin(nil) = {}

origin(al.P) = {l} ∪ origin(P)

origin(P1|P2) = origin(P1) ∪ origin(P2)
A process P , which is either nil or which contains actions only from one origin
node is a simple process: origin(P) ⊆ {l0}

In the semantics of the Portunes language this function forbids processes from one

origin to spawn processes from other origins. For example, the process definition

insider ::δs eval(logout(hall)
employee.login(secureRoom)employee)@insiderinsider

is not allowed, because both nodes employee and insider are origins of actions

in the process. This process definition can be interpreted as: the insider delegates

herself a task to enter the secure room using the privileges from the employee.

The execution of this process does not require any interaction with the employee

and does not represent a realistic scenario. We also found that the processes can

be better mapped in real life behaviors if they execute actions only from a sin-

gle origin. Naturally, a node can still execute other simple processes from other

origins in parallel.

56

3.5. The Portunes language

3.5.4 Operational semantics

Following Bettini et al. [19], the semantics of the Portunes language is divided

into process semantics and net semantics. The process semantics is given in terms

of a labeled transition relation
a−→ and describes both the intention of a process to

perform an action and the availability of resources in the net. The label a contains

the name of the node executing the action, the target node, the origin node and a

set of node names which identify which nodes the target node contains. The net

semantics is given in terms of a transition relation ⇒ which describes possible

net evolutions and relies on the labeled transition relation
a−−→ from the process

semantics.

origin(P) ⊆ {lo} lt �ln l grant(lo, δt, ln)

l ::δs login(lt)
lo .P‖ lt ::δtst Q

login(l,lt,lo,st)−−−−−−−−→ l ::δs P‖ lt ::δtst∪{l} Q
[login]

origin(P) ⊆ {lo} grant(lo, δt, lt) l ∈ st

l ::δs logout(lt)
lo .P‖ lt ::δtst Q

logout(l,lt,lo,st)−−−−−−−−−→ l ::δs P‖ lt ::δtst\{l} Q
[logout]

origin(P) ⊆ {lo} grant(lo, δt, lt) l ∈ st

l ::δs logout(lt)
lo .P‖ lt ::δtst Q

logout′(l,lt,lo,st)−−−−−−−−−→ l ::δs P‖ lt ::δtst Q
[logout’]

origin(P) ⊆ {lo} origin(Q) ⊆ {lo} l �e lt grant(lo, δt, e)

l ::δs eval(Q)@llot .P‖ lt ::δtst R
eval(l,lt,lo,Q)−−−−−−−→ l ::δs P‖ lt ::δtst R|Q

[eval]

l ::δs P
a−−→ l ::δs P

′

l ::δs P |Q a−−→ l ::δs P
′ |Q [pComp]

Figure 3.11: Process semantics

The process semantics of the language is defined in Figure 3.11. A node l can

login to node lt [login] if it has sufficient privileges to perform the action (grant),
if the node can be contained in the target node (�ln) and if the process is a simple

process with origin node lo (origin). As a result of executing the action, node l
enters node lt, or put differently, the target node lt now contains node l.

For a node to logout from a target node [logout], the target node must contain the

node (l ∈ st), the origin node must have proper privileges (grant) and the process

must be a simple process with origin node lo (origin). The action results in l
leaving lt, specified through removing its node name from st. The rule [logout’]

57

Chapter 3. Portunes: Representing multi-domain behavior

has the same premises but does not remove the node l from lt. The [logout’] is

needed in the net semantics of the language in Section 3.5.5 where the data nodes

can be copied rather than moved from one node to another.

Spawning a process [eval] requires both the node executing the action and the

target node to be close to each other or the target node to be digital (l �e lt), the

origin node should have the proper privileges (grant) and both processes P and

Q need to be simple processes with origin node lo (origin). The action results

in delegating a new task Q to the target node, which contains actions originating

from the same origin node as the task P . Note that for delegation to occur, in the

Portunes language it is sufficient for the employee (delegatee) to trust the insider

(delegator), rather than requiring mutual trust between them. The reason behind

this design decision is that we are interested in whether the insider can convince

the employee to execute a task, rather than whether the insider trusts the employee.

N
eval(l,lt,lo,P)−−−−−−−→ N1

N
neteval(l,P,lt)
========⇒ N1

[neteval] N1
a

==⇒ N
′
1

N1 ‖N2
a

==⇒ N
′
1 ‖N2

[nComp]

N
logout′(l,lt1 ,lo,st1)−−−−−−−−−−→ N1 N1

login(l,lt2 ,lo,st2)−−−−−−−−−→ N2 D(l) = D

N
netcopy(l,lt1 ,lt2)=========⇒ N2

[netcopy]

N
logout(l,lt1 ,lo,st1)−−−−−−−−−−→N1 N1

login(l,lt2 ,lo,st2)−−−−−−−−−→N2 (lt1 ∈st2∨lt2 ∈st1∨ D(l)=D)

N
netmove(l,lt1 ,lt2)==========⇒ N2

[netmove]

Figure 3.12: Net semantics

3.5.5 Net semantics

The net semantics in Figure 3.12 uses the process semantics to define the possible

actions in the Portunes language. Spawning a process is limited solely by the

process semantics [neteval].

To move, a node executes the logout and login actions in sequence [netmove].
Both actions should have the same origin node and should be executed by the

same node. Furthermore, an object node can move only to a node in its vicinity,

while digital nodes do not have this restriction (lt1 ∈ st2 ∨ lt2 ∈ st1 ∨ D(l) = D).

Data can be copied, which is presented by data entering a new node without leav-

ing the previous [netcopy]. Although the data can be copied, it still needs permis-

58

3.5. The Portunes language

4

3

65 7

8

9

21

10

...

evolution

4

3

6 57

8

21

10

8

99

...

4

3

65 7

8

21

10

8

99

4

3

6 5 7

8

9

21

10

8

9

NmN Nx Nx+1

...netmove(6, 2, 3)

4

3

65 7

8

21

10

8

99

4

3

65 7

8

21

10

8

99

4

3

65 7

8

9

21

10

8

9

N m’N’x N x+1’

... netmove(5, 2, 3)

1 world
2 hall
3 secureRoom

10 serverData4 remoteServer
5 insider
6 employee

7 secureServer
8 dongle
9 rootkit

Figure 3.13: Example of a net evolution

sion from both the node it resides at lt1 and from the node it is copied to lt2 .

A net and two possible behaviors are presented in Figure 3.13. Both of these evo-

lutions lead to the insider obtaining the server data. The nets and the net evolutions

together present a Portunes model of the environment.

The standard rules for structural congruence apply and are presented in Figure

3.14.

(ProcCom) P1|P2 ≡ P2|P1

(NetCom) N1‖N2 ≡ N2‖N1

(Abs) P1|nil ≡ P1

Figure 3.14: Structural congruence of processes and nets

Definition 14. Vicinity of a node l with a parent node lt1 is defined by all nodes
lt2 that share the same parent node (lt2 ∈ st1) or the child of lt2 is a parent of l:
(lt1 ∈ st2).

Proposition 1. A node from the object and spatial layer lt1 ::
δ1
st1
P1 can move only

to a node lt2::
δ2
st2
P2 in its vicinity.

Proof. The proposition follows directly from the netmove premise: lt1 ∈ st2 ∨

59

Chapter 3. Portunes: Representing multi-domain behavior

lt2 ∈ st1 .

Proposition 2. Nodes from the object and spatial layer can evaluate processes
only to child and sibling nodes.

Proof. The property follows directly from the premise of the eval action: �e.

Theorem 2. Let (G,D) be a Portunes graph and N be a net the represents the
same environment. The function Map maps a net in a Portunes graph, such that
I(Map(N),D) holds. The evolutions of the net N do not invalidate the invariants
I.

Proof. Suppose there is a net N1 which satisfies the invariants I(Map(N1),D).
Suppose exists a net N2 which is a product of a net transformation on N1. ∃N2 :
N1 ⇒ N2. We need to prove that I(Map(N2),D) also holds.

The relation ⇒ is used in the net actions neteval, netcopy and netmove.

1. neteval does not cause any changes of the structure of the net. Thus any

execution of neteval cannot invalidate an invariant.

2. netmove removes an edge (lt1 , l) and generates a new one (lt2 , l). We need

to show that the
login(l,lt2 ,lo,st2)−−−−−−−−−→ action does not invalidate any invariant.

(a) Let D(l) = O. After
logout(l,lt1 ,lo,st1)−−−−−−−−−−→, indegree(l) = 0. Every logout

action is accompanied by a login action. When
login(l,lt2 ,lo,st2)−−−−−−−−−→ is ap-

plied, indegree(l) = 1. Thus, invariant 1 is not invalidated.

(b) Let D(l) = O. After
login(l,lt2 ,lo,st2)−−−−−−−−−→ is applied, from �ln, D(lt2) = L

or D(lt2) = O. The former case does not invalidate the second invari-

ant by definition. Since I(Map(N1),D), ∃m ∈ Node : ∃〈m...lt2〉 ∧
D(m) = L, the latter case also does not invalidate the second invari-

ant.

(c) The invariants 3, 4, 5 are not invalidated by the definition of �ln.

(d) The last invariant is not invalidated because of the assumption in ��.

3. The effect of netcopy is an additional edge in the graph edge (lt, l) gen-

erated by the relation
login(l,lt,lo,st)−−−−−−−−→. The premise of netcopy enforces a

restriction D(lt) = D. Additional restriction comes from the relation �ln,

which allows an edge to be generated only between a node from the object

and digital layer D(l) = D ∧ D(lt) = O or between two nodes from the

60

3.5. The Portunes language

P1=logout(world).login(hall). (a)

eval(logout(insider).login(hall).logout(hall).
login(employee))@dongle (b)

P2=logout(hall).login(secureRoom).
eval(logout(employee).login(secureRoom).
logout(secureRoom).login(secureServer))@dongle. (c)

P3=eval(logout(dongle).login(secureServer))@rootkit
P4=eval(logout

′(server).login(remoteServer))@serverData

Figure 3.15: Process definitions enabling the road apple attack

4

3

65 7

89

21

10

1 world

2 hall

3

4

secureRoom

remoteServer

5 insider

6 employee

7 server

8 dongle

9 rootkit

10 serverData

Figure 3.16: Portunes graph of the road apple attack environment after the execu-

tion of the attack

digital layer D(l) = D ∧D(lt) = D. The former does not invalidate any of

the invariants, while the latter is restricted by the assumption on ��.

Example: Road apple attack (continued) In Section 3.5.2 we formally speci-

fied the environment where the road apple attack occurs. By using the language

semantics it is now possible to reason about possible behaviors. A behavior is

presented through defining the processes in the nodes, that lead to violating a

high-level policy.

Figure 3.15 shows an example of the actual road apple attack as four processes,

P1, P2, P3 and P4. All actions in the process P1 have an origin node insider,

in P2 an origin node employee, in P3 an origin node dongle and in P4 an origin

node rootkit. For clarity, the labels on the actions representing the origin node

are omitted from the process definitions.

The insider (P1) goes in the hall and waits for the employee (process P1 until

reaches point a). Then, the insider gives the employee the dongle containing the

rootkit, which the employee accepts (P1 reaches b). Later, the employee plugs the

dongle in the secure server (P2 reaches c) using its own credentials and the server

61

Chapter 3. Portunes: Representing multi-domain behavior

gives the dongle (P3) access to the local data. When the rootkit (P4) reaches the

server, it copies all the data to the remote server. The above actions represent

the road apple attack with a dongle automatically running when attached to a

computer [12]. After executing the processes from Figure 3.15, the data will

reside in the remote server, presented through an edge (remoteServer, data) in

the Portunes graph in Figure 3.16. The next step is to generate these processes

automatically, which is the focus of Chapter 4.

3.6 Conclusion

The main contribution of this chapter is the mapping of security aspects of the

physical and social domain together with the digital domain into a single frame-

work named Portunes. This formalization allows generating and analyzing attack

scenarios which span all tree domains, and thus helps in the protection against in-

sider threat. The framework consists of a high-level graph and a language inspired

by the Klaim family of languages. To capture the three domains, Portunes is able

to represent 1) physical properties of elements, 2) mobility of objects and data, 3)

identity, credential and location based access control and 4) trust and delegation

between people.

The applicability of Portunes is demonstrated using the example of the road ap-

ple attack, showing how an insider can attack without violating existing security

policies by combining actions from all three domains.

62

Chapter 4

Analyzing Portunes models

In Chapter 3 we introduced a framework for representing behaviors

that span the physical, digital and social domain. We used this frame-

work to present malicious behaviors of insiders, which use the trust

of their colleagues and gaps in the low-level polices to achieve their

goal. In this chapter we generate such behaviors, allowing the se-

curity professional a clear overview of the possible ways in which a

policy can be violated. We present an algorithm that finds in polyno-

mial time all possible actions allowed by the low-level policies. We

also provide two algorithms that generate from the actions a behavior

that leads to achieving a specific goal. In this chapter a specific goal

is defined informally by selecting an attribute. In Chapter 4 we show

how to specify arbitrary goals using modal logic formulae.

4.1 Introduction

In the previous chapter we provided an abstraction of the physical, digital and

social security domains in a single formal framework, Portunes. The framework

is able to describe specific aspects, such as mobility and delegation, from the three

security domains and allows their formal analysis. The analysis of these aspects

provides information on how the security domains interact with each other and

allows drawing conclusions on the overall security of the organization.

The goal of the analysis presented in this chapter is to check an environment

formally and to reveal possible malicious behaviors. When a behavior leads to

63

Chapter 4. Analyzing Portunes models

achieving a malicious goal, then we call it an attack. The analysis achieves this

goal by finding a sequence of actions that are allowed by the low-level policies,

but still result in the violation of a high-level policy. Finding and analyzing a

behavior is challenging because (1) it is computationally expensive to find all ac-

tions that can occur in the model and (2) the number of possible sequences of

actions grows exponentially with each new action. For unsecured environments

there can be an overwhelming number of behaviors that lead to an attack, making

the analysis of each of them unfeasible. The analysis presented in this chapter is

aimed at models of environments that are already considered as secure, such that

a manageable number of attacks can be expected.

The analysis consists of three algorithms executed in sequence. The first algo-

rithm finds the actions that can be executed by all nodes in the model. The second

generates a partial behavior by combining actions into process definitions in such

a way, that they lead to violating a policy. Both algorithms use the monotonic-

ity assumption which states that an action cannot be invalidated by another ac-

tion [14] (described in greater detail in Section 4.4). Because of the monotonicity

assumption, a behavior generated by the second algorithm might miss a number

of actions. The third algorithm shows how the monotonicity assumption can be

lifted by adding the missing actions and thus generating a realistic behavior.

The worst-case computational complexity of the analysis is O(N4) where N is

the number of nodes in the model. We implemented the semantics of the Portunes

language and the analysis in an open source tool. We compare the performance

of the first algorithm with a general purpose model checker, Groove. The first

algorithm is the most computationally intensive part of the analysis, because it

needs to find all possible actions that can be executed in the model under the

monotonicity assumption. The second and the third algorithm select a part of the

found actions that lead to the satisfaction of a goal. In the benchmarks we measure

the time to find all possible actions on a number of Portunes models.

The rest of the chapter is structured as follows. In Section 4.2 we provide re-

lated work in generating attacks and in Section 4.3 we introduce the terms we

use throughout the chapter. In section 4.4 we provide the algorithms for finding

all possible actions, and generate a specific behavior that invalidates a goal. Sec-

tion 4.6 describes the implementation of the algorithms in a tool and section 4.7

provides experimental data on the complexity of the first algorithm because this

algorithm consumes the most time during the analysis. Section 4.8 concludes this

chapter.

64

4.2. Related work

4.2 Related work

Using graphs to produce and describe multi-step attacks in computer networks is

a well researched area. Previous research shows that such analysis can be done

efficiently and effectively in the digital domain (for example: [14, 106, 74]).

We contribute to this research area by describing and implementing an analysis

capable of finding a malicious behavior in multi-domain models. The Portunes

framework allows modeling social and physical aspects of security, enabling the

generation of behaviors for malicious insiders in more realistic than purely digital

environments, where the insider can use also physical and social means to achieve

her goal.

Producing multi-step attacks in multi-domain models is a less researched area.

Probst et al. [84, 85] propose a formal model for describing scenarios that span

the physical and digital domain. This model allows an analysis to find which

users are able to reach a certain location, based on their identity and knowledge.

Due to the usage of process and object variables in the model, and not using

the monotonicity assumption, the worst-case computational complexity of this

analysis is exponential.

Kotenko et al. [62] also propose a model for describing attacks that use social en-

gineering and physical access using preconditions and postconditions of atomic

actions. However, the performance analysis of this approach indicates an expo-

nential complexity based on the number of nodes in the graph, making it unfeasi-

ble for graphs bigger than about a hundred nodes.

4.3 Preliminaries

In this chapter we use the term model as it is used in the model checking commu-

nity. A model consists of a set of states, which in our case are nets (for example

Figure 3.7) and a set of state transitions. Each state transition is caused by the

execution of an action from a process definition within a specific node and mod-

ifies the state as defined by the net semantics of the Portunes language presented

in Section 3.5.5. In the analysis of this chapter, the states are not complete be-

cause the process definitions in the nodes are not known in advance but they are

generated. A state that lacks process definitions is called a configuration, and the

transition between two configurations is called a configuration transition. A con-

figuration transition is an execution of one of the netmove, netcopy or neteval
rules from the net semantics of the Portunes language.

65

Chapter 4. Analyzing Portunes models

An action template is a data structure that with preconditions that must be satisfied

for a configuration transition to occur, and postconditions that specify the effects

of the transition to the configuration 1. The preconditions of a configuration tran-

sition are derived from the premises of the net rules and the postconditions of a

configuration transition are derived from the results of the net rules. Each action

template has a name, which states the process definition a node needs to execute

to generate the configuration transition.

Both the preconditions and the postconditions in an action template consist of

attributes. An attribute represents a relationship between two nodes. In the Por-

tunes language, attributes are a) containment, which states whether a node l2 is

logged into node l1 (i.e. l1 ::δsP where l2 ∈ s) and b) delegation, which states

whether a node l1 has a process definition originating from a node l2 (i.e. l1 ::
δ
s P

where l2 ∈ origin(P)).

For a single configuration, there can be a number of action templates with all their

preconditions satisfied. If the precondition of a configuration transition is never

invalidated by the successful execution of another configuration transition, the

order of the execution of the configuration transitions does not influence the final

configuration. During the analysis we use iteration numbers to determine which

configuration transition can occur earlier than another configuration transition.

The initial configuration of the model has iteration 0. The configuration with

iteration 1 is obtained when all possible configuration transitions are applied to

the configuration at iteration 0. In general terms, the configuration N ′ resulting

from the application of all possible configuration transitions at a configuration N
is one iteration higher than the configuration N . In Section 4.4.1 we provide more

intuition and an example of iterations and why are they needed in the analysis.

Example 1: An example of an action template derived from the netmove rule is

presented in Figure 4.1. To move the serverData from server to remoteServer,

two attributes need to be satisfied: the server needs to contain the serverData
and the serverData needs to contain a process originating from dongleData.

These two attributes are the preconditions of the action template. As a result of the

execution of the action template, two attributes change: server does not contain

the serverData anymore and the remoteServer now contains the serverData.

These two attributes are the postconditions of the action template. The iteration

number shows that this action template was found during the eighth iteration of

the model. The ninth iteration of the model will contain the postconditions from

the action template as well as the postconditions of all the action templates that

1In the analysis of computer networks, action templates are called exploits [101, 102, 25, 26,

62].

66

4.4. Algorithms

action name:

serverData :: [logout(server).login(remoteServer)]dongleData

precondition:

server contains serverData
dongleData delegates to serverData

postcondition:
remoteServer contains serverData
server does not contain serverData

iteration: 8

Figure 4.1: Example of an action template where the serverData moves from the

server to the remoteServer

had their preconditions satisfied in iteration eight.

4.4 Algorithms

The analysis in this chapter consists of three algorithms. The output of the analysis

is a behavior. The behavior is made up of a sequence of actions that are allowed

by the low-level security policies and satisfies a given goal. To determine which

action is possible, the algorithms implement the rules from the operational and net

semantics of the Portunes language.

The input-output relations of the three algorithms are presented in Figure 4.2.

The first algorithm takes as input a Portunes model and returns a set of action

templates that can be executed in the model. The second algorithm combines

these action templates and using the monotonicity assumption to generate a partial

behavior (partial attack) that invalidates a given goal. Finally, the third algorithm

lifts the monotonicity assumption and adds missing action templates in the partial

behavior.

The first two algorithms, inspired by Ammann et al. [14], consist of a forward

marking stage and a backward attack finding stage. In the forward marking stage,

the first algorithm starts from the initial configuration of the model and marks

all action templates that can be executed. During the backward attack finding

stage, the second algorithm begins from a goal, which is an attribute, and starts

generating a behavior by linking action templates based on their preconditions and

postconditions, until it reaches the initial configuration of the model. These two

algorithms use the monotonicity assumption, which states that the precondition of

67

Chapter 4. Analyzing Portunes models

simulateAttackgeneratePartialAttack

Goal

findActionTemplates

Portunes

Configuration
Action

Templates Attack

Partial

Attack

Action Templates

Figure 4.2: The input-output relations between the algorithms

a given configuration transition is never invalidated by the successful execution

of another configuration transition. In the physical world, this assumption means

that a person able to enter a room can never lose this ability, presenting the most

pessimistic scenario where the adversary never loses a credential or the ability to

reach a location. The netmove rule in the Portunes language via the rule logout
invalidates an attribute and thus the monotonicity rule. Therefore, the logout rule

is replaced with the logout’ rule from Section 3.5.4, making the postconditions of

netmove not invalidate any attribute. In Figure 3.12, the rule

N
logout(l,lt1 ,lo,st1)−−−−−−−−−−→N1 N1

login(l,lt2 ,lo,st2)−−−−−−−−−→N2 (lt1 ∈st2∨lt2 ∈st1∨ D(l)=D)

N
netmove(l,lt1 ,lt2)==========⇒ N2

[netmove]

becomes

N
logout′(l,lt1 ,lo,st1)−−−−−−−−−−→N1 N

login(l,lt2 ,lo,st2)−−−−−−−−−→N2 (lt1 ∈st2∨lt2 ∈st1∨ D(l)=D)

N
netmove′(l,lt1 ,lt2)==========⇒ N2

[netmove’]

The monotonicity assumption leads to an over-approximation of possible behav-

iors, because it leads to finding action templates that might not be possible in real

life.

Example 2: In realistic scenarios, physical objects can not be at two locations in

the same time. Consider the following example: A restricted area and a control

room are connected with a hall. In the hall there is a guard. The restricted area

can be accessed only if a guard is in the control room. The guard cannot be

simultaneously at both places, in front of the restricted area and inside the control

room, thus it is not possible for him to enter the restricted area. The environment

is presented with the following configuration:

restrictedArea ::
(⊥,controlRoom,∅)→{ln}
{hall} nil || controlRoom ::

(guard,⊥,∅)→{ln}
{hall} nil ||

hall ::
(⊥,⊥,∅)→{∗}
{guard} nil || guard ::

(⊥,⊥,∅)→{∗}
{} P

Because of the modification of the semantics of the netmove rule, the following

process definition P is now possible:

68

4.4. Algorithms

P = [logout′(hall).login(controlRoom).logout′(hall).login(restrictedArea)]guard

The guard enters the control room because of the policy (guard,⊥, ∅) → {ln}.

Because of the monotonicity assumption, the guard will be both in the hall and the

control room. The policy applied on the restricted area (⊥, controlRoom, ∅) →
{ln} is satisfied because the guard is inside the control room. Simultaneously,

the guard is also located in the hall allowing him to enter in the restricted area.

Thus, because of the monotonicity assumption, there will be an action template

requiring a physical node to be at two different locations (”controlRoom contains

guard” and ”hall contains guard”) as part of its preconditions, which in reality

is not possible.

Example 3: Another example when additional action templates are generated be-

cause of the monotonicity assumption is when a node gets locked in a certain

location. In Example 2, let us assume the guard takes a credential from the con-

trol room. After entering the control room, the guard can never leave the room

anymore, because there is no logout policy. In other words, the guard gets trapped

in this location. Because of the monotonicity assumption, however, the guard is

simultaneously in the hall too, so he can continue with other activities using the

credential he obtained in the control room. These activities will generate addi-

tional action templates that are not possible in reality, because the guard is not

able to exit the control room with the credential.

The monotonicity assumption, however, does not lead to missing any action tem-

plates. The only time the monotonicity assumption could cause missing of an

action template is when the action template has a precondition that requires an at-

tribute not to be satisfied [14]. In none of the actions templates we have a negative

attribute as a precondition. This is because the policies do not contain negation

(we cannot present policies where an absence of a credential allows an action) and

none of the premises in the Portunes language requires an absence of a delegation

or containment between two notes.

In Figure 4.1 the first and second algorithm will use only the first postcondition

remoteServer contains serverData in the further iterations. The second postcon-

dition, server does not contain serverData invalidates an attribute and is ignored.

Because of the monotonicity assumption, the set of action templates generated

by the second algorithm does not include cyclic movements. A cyclic movement

occurs when a node returns to a location it has previously been located into. In

terms of the Portunes language, a cyclic movement occurs when a node N1 moves

away from a node N2, and after a number of actions returns back to N2.

Example 4: In the initial state of the road apple attack environment, the node

world contains the node insider. A simple example of a cyclic movement is:

69

Chapter 4. Analyzing Portunes models

6 7

910

8

4

1

5

2 3

6 7

910

8

4

1

5

2 3

6 7

9

8

4

1

5

2 3

6 7

910

8

4

1

5

2 3

6 7

910

8

4

1

5

2 3

Iteration 2

Iteration 1Iteration 0

6 7

910

8

4

1

5

2 3

6 7

910

8

4

1

5

2 3

Iteration n

Figure 4.3: The containment relationships at the initial configuration, after the

first iteration, the second iteration and after the last iteration.

insider ::δs [logout(world).login(hall).logout(hall).login(world)]
insider

After the movement of the insider to the hall, because of the monotonicity as-

sumption, the second algorithm considers that both the hall and the world contain

the insider.

The algorithm does not add additional action templates that return the insider in

the world and thus cannot generate such a behavior. However, such behaviors

are needed in situations where, for example, a person needs to go to a location to

obtain a credential, and then return to a previously visited location to continue with

the attack. The third algorithm shows how the effects of the monotonicity rule can

be lifted and generates a realistic behavior that may include cyclic movement.

4.4.1 Intuition for the algorithms

This section continues the example from Chapter 3 and provides intuition how the

analysis can be used to discover the road apple attack.

The first algorithm, findActionTemplates, finds all possible action templates that

can be executed by the nodes insider, employee, dongle and dongleData in

the road apple attack environment. Figure 4.3 shows the Portunes graph at the

70

4.4. Algorithms

P1=[logout′(world).login(hall).eval(logout′(insider).login(hall). (a)

logout′(hall).login(employee))@dongle]insider (b)

P2=[logout′(secureRoom).login(hall). (c)

eval(logout′(employee).login(secureRoom). (d)

logout′(secureRoom).login(server))@dongle]employee (e)

P3=[eval(logout′(dongle).login(server))@dongleData]dongle (f)

P4=[eval(logout′(server).login(remoteServer))@serverData]dongledata (g)

Figure 4.4: Process definitions generated by generatePartialAttack enabling the

road apple attack. The definitions are partial because they do not contain cyclic

movement.

initial configuration, after the first iteration, after the second iteration and after

the last iteration, when all found action templates are executed. The edges in

the graph represent the initial contain relationships together with the effects from

all found action templates. For example, the edge from remoteServer (4) to

serverData (9) at iteration n means that remoteServer at one point can contain

serverData. In the first iteration four configuration transitions are possible, from

which two are visible in the figure: the insider (5) can move to the hall (2), the

insider can delegate a task to the dongle (8), the employee (6) can move to the

hall, and the dongle can delegate a task to the rootkit (10). After the first iteration,

because of the monotonicity assumption, the employee is both in the hall and

the secure room (3), and the insider in the world (1) and the hall. In the second

iteration another three configuration transitions are possible. The employee can

move from the hall to the world and the dongle can move both to the world and

the hall, because the insider is in both of the locations.

The generatePartialAttack algorithm uses the set of action templates generated by

findActionTemplates, the initial configuration of the Portunes model and the goal:

”remoteServer contains data” to generate a partial attack scenario. To present

them in the Portunes language as process definitions distributed among the net we

need to perform two additional steps: 1) all action templates need to be sorted by

the origin node of the actions they contain and 2) the action templates in every

node in the net need to be ordered by iteration number. The first step defines in

which node in the net the action from a template will be positioned and the second

step orders the templates by the order of execution.

Figure 4.4 presents the distilled process definitions after merging action templates

having actions with the same origin and ordering them by iteration number. All

actions in process P1 have the node insider as an origin and after the first step will

be located in the node insider. After the second step, these actions are ordered

71

Chapter 4. Analyzing Portunes models

4

3

65 7

89

21

10

1 world

2 hall

3

4

secureRoom

remoteServer

5 insider

6 employee

7 server

8 dongle

9 rootkit

10 serverData

Figure 4.5: The Portunes graph after running the processes P1-P4.

by iteration number. In generating the templates, the templates that have lower

iteration number are executed before the templates with a higher iteration number.

Thus, the actions logout′(world).login(hall) will be positioned in the process

before or after the action eval in the same process.

One interpretation of the actions is the following. The insider (P1) goes in the hall

and waits for the employee (process P1 is then at point a). When the employee (P2)

arrives in the hall (P2 at c), the insider gives him the dongle containing malicious

software, which the employee accepts (P1 at b). Later, the employee plugs the

dongle in the secure server (P2 at e) using its own credentials and the server gives

the dongle (P3) access to the local data. When the malicious software (P4) reaches

the server, it sends all the data to the remote server. The above actions closely

resemble the road apple attack [122] with a dongle automatically running when

attached to a computer [12] and covertly sending sensitive information [30, 31].

The resulting scenario defines only a partial attack. When the dongle reaches the

employee, the dongle cannot move to the secure room, because the employee is

located in the hall at that moment. Thus, the part of the attack scenario where

the employee returns back to the secure room is missing. After running the simu-
lateAttack algorithm, this cyclic movement is also included (bold font). In addi-

tion, since the simulateAttack uses the semantics of the netmove rule, the actions

using the logout′ rule are replaced with actions using the logout rule:

P2 = [logout(secureRoom).login(hall).eval(logout(employee).login(secureRoom).

logout(secureRoom).login(server))@dongle.logout(hall).login(secureRoom)]employee

After running the Portunes program, the final configuration of the Portunes model

is given in Figure 4.5.

In the above example, the analysis combines physical, digital and social aspects of

security. From the example, one can observe that enforcing a policy which forbids

a server to accept remote connections is useless if there is no physical security

72

4.4. Algorithms

policy regulating which people can physically reach the server. An additional

organizational policy should address dongle use among employees.

Having described the monotonicity assumption and the intuition of the algorithms

in detail, now we present the three algorithms.

4.4.2 Algorithm I: Finding all action templates

name : findActionTemplates
type : actionTemplate:

〈actionname, postcondition, preconditions, iteration〉
input : Queue of initially satisfied attributes sAttributes
output: Set of action templates allT emplates

1 begin
2 iteration = 0

3 while sAttributes �= ∅ do
4 a = pop an attribute from sAttributes
5 templates = all possible action templates t where

a ∈ t.preconditions
6 foreach template t in templates do
7 if all t.preconditions are satisfied and consistent then
8 if t.postcondition not satisfied then
9 push t.postcondition onto sAttributes

10 t.iteration = iteration
11 allT emplates = allT emplates ∪ t

12 iteration++

Algorithm 1: Find all action templates

The first algorithm, findActionTemplates searches for action templates that exist

in the model. This search answers the question: which attributes can be satisfied?

The pseudo-code of the findActionTemplates algorithm is shown in Algorithm 1.

The findActionTemplates algorithm uses a bottom-up approach. As an input the

algorithm has a queue of satisfied attributes. For each satisfied attribute, the algo-

rithm finds the templates that have the attribute as a precondition (line 5). When

all preconditions of an action template are satisfied and consistent (line 7), the

(monotonic) postcondition of this template is added to the set of satisfied attributes

73

Chapter 4. Analyzing Portunes models

(line 9). The algorithm also keeps track of the iteration at which the template was

found (line 10), which is used by the second algorithm.

The monotonicity assumption allows a physical node to be at multiple locations

simultaneously. The preconditions of an action template are consistent if they do

not require the same physical or spatial node to be simultaneously at two different

locations. If an action template is inconsistent, the configuration transition can

never be executed and the action template is ignored. An example of a situation

where an action template requires the same physical node to be at two different

locations is presented in Section 4.4, Example 2.

4.4.2.1 Termination

The termination of the algorithm depends on the while loop in line 3. The al-

gorithm terminates when all attributes that can contribute to the generation of an

action template have been considered (sAttributes = ∅). An attribute is added to

sAttributes only if it is a result of a newly found action template and has not been

satisfied before. The maximum number of attributes in the model is limited and in

the worst case scenario can be N2 delegate attributes plus N × (N − 1) contains

attributes. Thus, the findActionTemplates algorithm will terminate in maximum

2N2 −N steps.

4.4.2.2 Complexity analysis

First, we present three assumptions regarding the policies in a model. We believe

these assumptions are reasonable and realistic for secure environments, which are

the target of the analysis. Then, we analyze every element in the algorithm that

might contribute to its computational complexity.

Assumption 1: There is a constant number of nodes with a policy requiring a
certain location or credential. We consider this assumption reasonable, because

policies are defined based on requirements, not over a percentage of nodes. Thus,

a policy can be set on a specific number of nodes which is not dependent from

the total number of nodes. An example is a requirement where all rooms should

be unlocked with a master key. In this case, the number of nodes with the same

policy is equal to the number of rooms. However, the number of rooms does not

depend on the number of total nodes in the model, but depend on the design of the

building. During our modeling experience, we never encountered a model where

the deployment of a specific policy depends on the number of nodes in the model.

74

4.4. Algorithms

Assumption 2: Policies require a constant number of credentials. It is unpractical

to ask a user to present more than a few credentials when being granted a privilege.

Formally, we assume for each policy δt(k1, k2, K), that the set K has a constant

upper bound of elements. If this assumption does not hold, a policy might require

up to N credentials before allowing an action, where N is the number of nodes in

the model.

Assumption 3: There is an upper bound on the number of policies per node. We

consider this assumption reasonable because in reality the number of policies on

a security mechanism does not depend from the size of the environment. If this

assumption would not hold, each node in the model can have up to 3× (N+1)2×
2N+1 policies. There can be one policy for each of the capabilities, ln, lt and e,

(N + 1)2 policies from all combinations of location and identity (including ⊥),

and 2N+1 policies from all combinations of credentials.

There are four points in the algorithm that are of interest for the complexity anal-

ysis: the while loop in line 3, the search for possible action templates in line 5, the

foreach cycle in line 6 and finding all satisfied preconditions in line 7. We look

closely at each of these points.

Attributes are added only once to the satisfied attributes queue. The complexity

of the while loop in the algorithm is equal to the maximum number of attributes

that can be satisfied for a given model. Thus, the complexity of the while loop in

line 3 is O(N2).

In line 5, the algorithm searches for all action templates that have the newly sat-

isfied attribute a as a precondition. There are three types of action template that

can have the attribute a as one of their preconditions, each corresponding to one

of the rules from the semantics of the Portunes language (Figure 3.12): netmove′,
netcopy and neteval.

Case I: l :: [logout′(lt1).login(lt2)]
lo (netmove’)

From the semantics of the netmove′ rule, the preconditions of the rule consist of

the preconditions of the logout′ rule, the preconditions of the login rule, and the

attributes lt1 contains lt2 (1) and lt2 contains lt1 (2). The logout′ rule has the same

preconditions as the logout rule: lt1 contains l (3), lo delegates to l (4) and the

preconditions of the grant function. The grant function has the preconditions:

lo contains lco (5) and lpo contains lo (6). The login rule has the precondition lo
delegates to l which is identical to the attribute (4) and the preconditions of the

grant function (5) and (6).

The attribute a contains information of two node names. If the attribute a is con-

sidered as one of the attributes (1), (2), (3) or (4), two of the nodes l, lt1 , lt2 or lo
are defined. There can be at most N2 such action templates, one for every combi-

75

Chapter 4. Analyzing Portunes models

nation of the two unidentified nodes. If the attribute a is considered as one of the

attributes (5) or (6), then the node lo is known. Because of the first assumption,

there are only a constant number of nodes lt1 and lt2 with policies that require at-

tribute a. Knowing lo and one of the nodes lt1 or lt2 , there are N2 possible action

templates with the attribute a as a precondition. The attribute a can be considered

as any of the attributes mentioned above, thus all of them need to be checked. The

attribute a can be considered as (1), (2), (3), (4), and (5), (6) for the policies at

node lt1 and attributes (5), (6) for the policies at node lt2 . In total, there are 8×N2

netmove′ action templates that could have a as a precondition. As a result, the

computational complexity of finding these templates is O(N2)

Case II: l :: [logout′(lt1).login(lt2)]
lo (netcopy)

The netcopy rule consists of the preconditions of the logout′ rule ((3), (4), (5),

(6)) and the preconditions of the login rule ((5), (6)). These attributes are a subset

of the attributes presented in Case I and the complexity analysis is identical. Thus,

the complexity to find the netcopy action templates that have the attribute a as a

precondition is O(N2).

Case III: l :: [eval(P)@lt)]
lo (neteval)

From the semantics of the neteval rule, the preconditions of the rule consist of

the preconditions of the eval rule. The eval rule consists of the preconditions of

the grant function ((5),(6)), preconditions of the l �e lt relation and lo delegates

to l (4). The relation l �e lt consists of the attributes l contains lt (7), l′po contains

l (8) and l′po contains lt (9).

If the attribute a is considered as one of the attributes (4), (5) or (6), the complexity

analysis is similar as in Case I. If the attribute is considered as the attribute l
contains lt (7), there can be N possible neteval action templates, one for every

possible lo. If the attribute a is considered as the attribute l′po contains l (8), l is

known, and there are N2 possible neteval action templates, for every combination

of lo and lt. Similarly, if the attribute a is considered as attribute l′po contains lt
(9), then lt is known, and there are N2 possible neteval action templates, one for

every l and lo. Again, the worst case complexity for finding all possible neteval
action templates is O(N2).

From the three cases, the overall complexity of finding the action templates that

have a specific attribute as an attribute is the complexity to find all netmove′ action

templates (O(N2)), all netcopy action templates (O(N2)) and all neteval action

templates (O(N2)). Thus the computational complexity of line 5 in the algorithm

is O(N2).

The foreach loop in line 6 traverses all found templates, which we showed can be

at most O(N2). From the net semantics of the Portunes language and assumption

76

4.4. Algorithms

lt1 contains lt2 (1) lpo contains lo (6)

lt2 contains lt1 (2) l contains lt (7)

lt1 contains l (3) l′po contains l (8)

lo delegates to l (4) l′po contains lt (9)

lo contains lco (5)

Figure 4.6: Attributes used in the semantics of the Portunes language

2, it follows that each action template has a constant number of preconditions.

Thus, the number of preconditions that needs to be checked at line 7 is constant.

If the satisfied attributes are implemented using hash tables, which have a con-

stant lookup time the execution of the whole line 7 is constant. Therefore, the

complexity of the whole algorithm, using the three assumption is O(N4).

The difference with the markAttributes algorithm proposed by Ammann et al. [14]

is how the action templates are found. At every iteration, the markAttributes algo-

rithm exhaustively searches for all combinations of attributes and action templates

and for each action template checks whether its preconditions are satisfied. As a

result, the worst case complexity of the algorithm is O(A2E), where A is number

of attributes and E the number of action templates. For a given Portunes model,

under the above assumptions, there can be a maximum of N2 attributes and N4 ac-

tion templates (for each combination of node, parent, target, origin), which would

make the complexity of this algorithm O(N8).

There are two main differences between the markAttributes and findActionTem-
plates. First, in each iteration the findActionTemplates algorithm searches only

for the attributes that were generated as a postcondition in the previous iteration,

rather than all attributes. Second, The findActionTemplates algorithm searches

only for action templates that have the newly satisfied attribute as a precondition,

rather than all possible action templates. These two improvements decrease the

computational complexity of the algorithm down to O(N4).

4.4.3 Algorithm II: Generating partial attacks

The first algorithm answers the question: which attribute can be satisfied? The

second algorithm shows how an attribute can be satisfied. The pseudocode of the

generatePartialAttack algorithm is shown in Algorithm 2.

Using the generatePartialAttack it is possible to generate a sequence of actions

that lead to a particular goal by backtracking from the goal to the initial situation,

following the postconditions and preconditions of the action templates. The re-

77

Chapter 4. Analyzing Portunes models

sulting behavior is partial since it does not contain any cyclic movement of the

nodes. An example of a cyclic movement is an insider going from a hall to a room

to obtain a key, and returning to the hall to continue with the attack.

name : generatePartialAttack

input : Set of action templates actionT
input : Set of attributes goals
input : Set of satisfied attributes sAttributes
output: List of action templates representing a partial attack

1 begin
2 list of action templates pResult = ∅
3 int maxItt = the maximum iteration found in actionT
4 return find (actionT , goals, sAttributes, maxItt, pResult)

name : find

input : Set of action templates actionT
input : Set of attributes goals
input : Set of satisfied attributes sAttributes
input : Iteration at which the action template was found itt
input : List of action templates leading to the goal pResult
output: List of action templates representing a partial attack

5 begin
6 foreach attribute goal in goals do
7 find a template s ∈ actionT with the smallest iteration number

such that s.postcondition = goal and s /∈ pResult
8 if there is no such template then return error

9 pResult.append(s)
10 let p be a set of preconditions of s not in sAttributes.

11 if p �= ∅ then
12 sAttributes = sAttributes ∪ p
13 pResult = find (actionT , p, sAttributes, s.itt, pResult)

14 return pResult

Algorithm 2: Generate a monotonic attack scenario

As output, the algorithm produces a set of action templates, contributing to a par-

tial behavior. The behavior is partial because it does not contain action templates

where the node needs to return to a previous location. For example, assume an

insider located in a hall, which connects a room and a restricted area. The insider

goes from the hall to the room to obtain a credential allowing her access to the re-

78

4.4. Algorithms

stricted area. Because of the monotonicity assumption, the insider can then move

from the room directly in the restricted area because she is also still in the hall.

If the monotonicity assumption is lifted, additional action templates are required

where the insider returns from the room to the hall.

The algorithm starts from the goal set and finds an action template of which the

postcondition satisfies a goal. For each unsatisfied precondition of the action tem-

plate, the algorithm recursively searches for an action template whose postcondi-

tion satisfies the attribute of interest.

To generate a behavior from a given list of action templates we adapt the algorithm

findMinimal presented by Ammann et al. [14]. The algorithm takes as an input the

action templates, actionT, generated by the findActionTemplates algorithm, a set

of attributes, goals, that need to be satisfied, a set of initially satisfied attributes

sAttributes and an iteration number. The resulting list of action templates or-

dered by the iteration present partial attack scenario.

4.4.3.1 Termination

The generatePartialAttack algorithm terminates when either no action template

that leads to the satisfaction of a specific attribute can be used (line 8) or when all

goals are satisfied (line 14). The termination of the algorithm depends on the depth

of the recursion at line 13. At each recursion, the number of satisfied attributes and

used action templates increases, reducing the number of possible action templates

to choose from. Thus, the algorithm at one point will use all possible attributes

and terminate. In the worst case scenario, the algorithm may generate an attack

scenario where all attributes need to be satisfied which translates into 2N2 − N
recursion calls.

4.4.3.2 Complexity analysis

From the net semantics of the Portunes language it follows that each action tem-

plate has a constant number of preconditions. Thus, the loop at line 6 is constant,

because the goals are derived from the preconditions of an action template. Simi-

larly, in line 10 there is a constant number of lookups to check whether a precon-

dition of the action template belongs to the set of satisfied attributes. The satisfied

attributes are implemented using hash tables, which have a constant lookup time.

Finding a template at line 7 is also constant when the action templates are im-

plemented using hash tables. Thus, the computational worst-case complexity of

the algorithm is determined by the number of recursive calls. In the worst-case

79

Chapter 4. Analyzing Portunes models

scenario, the algorithm can be executed for every possible attribute, making the

computational complexity of the algorithm O(N2).

4.4.4 Algorithm III: Simulating the attacks

Because of the monotonicity assumption, the set of action templates generated

by generatePartialAttack does not include cyclic movements. The simulateAttack
algorithm, adds additional action templates in the partial scenarios that generate

cyclic movement of the nodes.

name : simulateAttack
input : Set of initially satisfied attributes base
input : List of action templates pAttack
input : Set of action templates actionT
output: List of action templates representing an attack scenario results

1 begin
2 list result = ∅
3 while pAttack �= ∅ do
4 a = the last template in pAttack
5 S = set of preconditions of a not part of base
6 if S = ∅ then
7 result.append(a)
8 change conditions in base based on nonmonotonic

a.postcondition
9 pAttack = pAttack\a

10 else
11 set of action templates partial = {∅}
12 partial = find (actionT , S, base, a.iteration, partial)
13 pAttack.append(partial)

Algorithm 3: Simulate the attacks

The simulateAttack algorithm uses a list of action templates pAttack, which are

generated by the generatePartialAttack algorithm and a set of attributes satisfied

from the initial configuration of the Portunes model, and returns a list of action

templates which represent an attack scenario. The algorithm takes the last action

template from the list and checks if its precondition is met. If all attributes in the

precondition are satisfied, the algorithm executes the action from the template and

80

4.4. Algorithms

updates the attributes with the postcondition from the action template. If a precon-

dition is not satisfied because it is invalidated by the execution of another action

template, the algorithm uses the find function of the generatePartialAttack al-

gorithm to generate a new partial scenario which tries to satisfy the precondition

and continues the simulation. The variable result is a list containing an attack

scenario which might include cyclic movement and is semantically valid when

translated into the Portunes language. The attack can then be translated to the

Portunes language by grouping the actions by origin node.

4.4.4.1 Termination

The output of generatePartialAttack algorithm is finite, thus pAttack is a finite

list. The simulateAttack algorithm will terminate when the number of action

templates in pAttack gets exhausted (line 3). The only time we add action tem-

plates in pAttack is at line 13, when we need to satisfy an invalidated precondi-

tion. We show in two steps that the algorithm terminates. First, we show that for

an algorithm not to terminate, we need an action template with mutually exclusive

preconditions. Second, we show that such action template does not exist.

Step I: We add an action template to the list pAttacks at line 13 only when a

precondition of the action template is invalidated. The satisfaction of the precon-

dition can invalidate another already satisfied precondition. We distinguish three

cases based on the mutual dependence of preconditions in an action template.

Case I: An action template has an independent precondition invalidated. In this

case, the algorithm will generate a finite list of action templates that will satisfy

the precondition.

Case II: An action template has the precondition A invalidated, and its satisfac-
tion invalidates an already satisfied precondition B. In this case, the algorithm

will first generate one trace that satisfies the invalidated precondition A and then

an additional trace to satisfy the newly invalidated precondition B.

Case III: An action template that has a precondition A invalidated, and its sat-
isfaction invalidates an already satisfied precondition B. The satisfaction of the
newly invalidated precondition B invalidates the newly satisfied precondition A.
When the algorithm reaches such action template, one of the two attributes will

never be satisfied. The algorithm will find new action templates (line 12) and ap-

ply them (line 8) which will lead to the satisfaction of the invalidated attribute.

When the invalidated attribute gets satisfied, the other attribute will get invali-

dated, causing the algorithm to search for additional new action templates and

leading to an infinite loop.

Thus, the algorithm will not terminate only if there is an action template with two

81

Chapter 4. Analyzing Portunes models

mutually exclusive attributes A and B as a precondition to achieve a postcondition

C:

1. Satisfaction of the attribute A requires the invalidation of the attribute B.

2. Satisfaction of the attribute B requires the invalidation of the attribute A.

3. Satisfaction of the attribute C requires the satisfaction of both A and B.

Step II: Only the netmove template invalidates an attribute as a postcondition.

Thus, the action template must have a precondition that requires a node to be at

a specific location (requiring the node to move to the location), and another pre-

condition that requires the same node to be at another location (requiring the node

to move to the other location). The first algorithm eliminates the action templates

that require the same physical or spatial node to be simultaneously at two different

locations as a precondition, because these actions cannot be performed in realistic

scenario. Thus, there are no such action templates that can lead to non-termination

of the algorithm.

4.4.4.2 Complexity analysis

The maximum number of action templates in pAttack is 2N2 because there can be

maximum of N2 containment relationships and N2 delegations. Thus, the com-

plexity caused by the while loop in line 3 is O(N2). For each action template, the

algorithm might need to generate a cyclic movement and call the find function

in line 12. From the previous algorithm, the complexity of generating a partial

scenario is O(N2). The rest of the actions in the algorithm are constant. Assum-

ing the existence of only simple cycles, meaning there are no cyclic movements

within the cyclic movements, the worst case complexity of the simulateAttack
algorithm is O(N4).

4.5 Correctness of the analysis

The monotonicity assumption reduces the computational complexity of the analy-

sis from exponential to polynomial. In Section 4.4 we described both the require-

ments and the effect of using the monotonicity assumption. The monotonicity

assumption requires that the invalidation of an attribute does not influence the ex-

ecution of any other action template and as a result (1) the findActionTemplates
algorithm produces an over-approximation of possible action templates (Example

82

4.6. Implementation

3 in Section 4.4 and (2) the generatePartialAttack algorithm produces attack

scenarios without cyclic behavior (Section 4.4.1).

To satisfy the requirement of the monotonicity assumption, we changed the se-

mantics of the Portunes language, by replacing the netmove rule with the netmove′

rule. In this section we show that the attacks generated by the analysis are correct

with respect of the semantics presented in Chapter 3: (1) the over-approximation

of action templates does not lead to attack scenarios and (2) the attack scenarios

generated by the analysis may contain cyclic behavior.

The simulateAttack algorithm follows the net semantics of the Portunes language

introduced in Chapter 3. Thus, an attack scenario produced by this algorithm

can be reconstructed using the Portunes language. If the algorithm generatePar-
tialAttack generates an attack scenario that cannot be executed using the Portunes

semantics, algorithm simulateAttack will either add any missing action templates

to make the attack semantically correct (lines 10-13) or, if this is not possible,

the generatePartialAttack algorithm will return an error (line 8). Thus, the attack

generated by the analysis follows the semantics of the Portuens language.

4.6 Implementation

We implemented Portunes in Java. Figure 4.7 illustrates a screenshot of the Por-

tunes interface. The interface is able to draw a new graph from scratch, including

the different kind of nodes, policies and relations. The steps for a successful run

of the tool are given in the activity diagram in Figure 4.8. Below we give a de-

scription of the various aspects of the Portunes interface.

1. Toolbar The toolbar is used for loading and saving a graph. It also provides

buttons to add the different kinds of nodes to the graph (object, spatial and

digital). At the end are the buttons for running the algorithms. The first

algorithm will give all possible actions using the monotonicity assumption.

By first selecting an edge that represents an undesirable goal and then press-

ing the second algorithm button, Portunes will show a number of possible

behaviors with the selected edge as a final configuration.

2. Attack scenarios This panel shows possible behaviors after a successful

run of the second algorithm. The list is ordered by the number of actions

required for the behavior to complete. By selecting a behavior one can see

the behavior in a step-by-step execution using the panel at the bottom (5).

3. Graph view With the graph view one can edit a graph by dragging nodes

83

Chapter 4. Analyzing Portunes models

Figure 4.7: Screenshot of the implementation of Portunes

and drawing edges between them. The type of relation can be specified by

right clicking a node and selecting the appropriate type. The graph view

uses different colors and shapes for the different types of nodes and edges.

The graph view is also used by the step-by-step execution to show each

action in a graphical way by adding arrows to nodes that are involved in the

current step.

4. Policy panel With the graph view it is possible to draw a complete configu-

ration of the model, except for the policies. The Policy panel allows a user

to define the different types of policies for a node (login, logout and eval).

The panel is divided into three tabs used for giving an overview of the cur-

rent policies, defining a new policy and editing an existing policy. A policy

consists of an identity, location and zero or more credentials.

5. Attack description This panel shows a step-by-step textual description of

a selected behavior. Each step is explained and the user can step back and

forward through the behavior. With each step the graph view (3) changes to

match the current step of the behavior.

84

4.7. Benchmark

Figure 4.8: Activity diagram of the sequence of actions in the Portunes tool

4.7 Benchmark

The performance analysis is done to study the empirical complexity of the first

algorithm and compare it to Groove, a general purpose model checker. The anal-

ysis was done on a Intel Core 2 Quad computer with CPU at 2.4 Ghz and 8 GB

of RAM. Windows 7 64-bit was used as operating system with version 1.6 of the

Java runtime environment installed. As a comparison, Groove version 4.0.2 was

used.

4.7.1 Groove

Groove2 is a model checker that uses graphs for modeling the design-time, compile-

time, and run-time structure of object-oriented systems, and graph transformations

as a basis for model transformation and operational semantics. The tool allows en-

coding the Portunes semantics as a set of graph transformation rules. The graph

models of Groove have the same benefit as Portunes, namely that the office model

can be visualized as a graph.

4.7.2 Models

To get experimental data of the performance of the first algorithm and bench-

mark compared to Groove, we used a variation of the road apple attack inside an

office model3. The model is scalable, as more floors, rooms and people can be

added. We made a secure and insecure variant of the office model, by making

more and less restrictive policies respectively. For example, in the insecure vari-

ant, the rooms and floors have no login restrictions, whereas the secure variant

only allows card holders to enter the floors and each card holder can only enter

one specific room, namely the one they start in. The insecure office model is the

worst-case scenario where the organization has no explicit security mechanisms

2groove.cs.utwente.nl
3Available for download at portunes.sourceforge.net

85

Chapter 4. Analyzing Portunes models

50 100 150 200 500 1000 2000
Office 1.1 4.1 17.4 46.8 1770.8

SecureOffice 0.3 0.9 1.3 2.0 5.8 28.9 212.4

Figure 4.9: Time analysis for the findActionTemplates algorithm

that restrict user and data mobility, and the secure office model is an average-case

scenario where the organization has taken actions to increase the security of the

environment. The average-case scenario does not give information on the worst-

case complexity, but it does show the speed for an architecture where proper secu-

rity measures exist. We generated 7 models for the road apple example, containing

50, 100, 150, 200, 500, 1000 and 2000 nodes.

4.7.3 Results from the benchmark

The results of the time performance analysis are presented in Figure 4.9. To

find the coefficients a and b from the complexity formula aN b, we used power

regression. The formula for the power regression curve of the Office data is

2 × 10−6N3.26 with correlation coefficient R2=0.984. The formula for the power

regression curve of the SecureOffice data is 3×10−4N1.69 with correlation coeffi-

cient R2=0.97. From the data, we can see that on average, the worst case complex-

ity model grows N3.26 with the increase of number of nodes in the model. For the

SecureOffice model which represents a well secured organization this coefficient

is much less, 1.69. As expected, the measured time complexity of Portunes for

4The correlation coefficient R2 is the proportion of variance in a data set that is accounted

for by the formula. The coefficient represents a measure of how well the formula represents the

measured data. If the formula passes exactly through every point on the scatter plot then the

coefficient would be 1. The further the line is away from the points, the closer the coefficient is to

0.

86

4.8. Conclusion

50 100 150 200
Office 52 3160 37197

SecureOffice 11 319 2100 7034

Figure 4.10: Time analysis for Groove

the worst-case model is below O(N4). The measured time complexity of Groove

for the worst-case model is O(N5.99).

The results show that generating a behavior quickly becomes infeasible using a

general purpose model checker. Groove was unable to compute the office model

with 200 nodes where Portunes could find all possible action templates in the

office model 500 within an acceptable time frame (∼30 minutes). Looking at

the secure office model the difference becomes even more clear. Groove requires

almost 2 hours for the 200 nodes model, where Portunes is able to find the same

action templates for the 2000 nodes model in less than 4 minutes.

4.8 Conclusion

In this chapter we presented the algorithms to analyze attacks that span the phys-

ical, digital and social domain. We show that computing insider attacks can be

done efficiently by splitting the work in two stages. In the first stage we compute

all possible actions by using the monotonicity assumption. In the second stage

we can recreate a specific attack by retracing the required steps. The performance

analysis shows that for reasonably secure environments (i.e. SecureOffice) the

algorithms can generate behaviors in a reasonable time (i.e. less than 4 minutes).

In this chapter we also described the Portunes tool, designed around the presented

87

Chapter 4. Analyzing Portunes models

algorithms. The tool shows that the model and the algorithms can indeed generate

useful attack traces for a real life scenario. We tested multiple models with the

tool, all describing different situations in order to test the algorithms.

The complexity of the second and third algorithm increases polynomially with

the number of nodes. However, the number of possible behaviors grows expo-

nentially with the action templates found by the first algorithm. Therefore, it is

important to generate/select only those behaviors that are of interest to the security

professionals. In the following chapter, we present a logic that specifies high-level

policies formally. The logic can be used as a heuristic in the second algorithm in

generating behaviors that satisfy defined properties, as well as to select specific

behaviors from a set of generated behaviors.

88

Chapter 5

Expressing high-level policies in
Portunes

In this chapter we present a temporal logic for describing high-level

policies in the Portunes framework. The logic is inspired by Hennessy-

Milner Logic (HML) and the modal logic for mobile agents. First, we

provide requirements and motivating examples where we informally

describe the properties of interest in a Portunes model. Second, we

present the logic and show that it is sufficiently expressive to present

these properties formally. The logic presented in this chapter serves

three purposes: (1) from a modeling perspective, the logic enables

definition of high-level policies, that should hold for the system as a

whole, rather than on a specific object as was the case with the low-

level policies in Chapter 3; (2) from an analysis perspective, the logic

enables the description of a goal containing a conjunction or disjunc-

tion of multiple subgoals rather than a simple goal as was the case in

Chapter 4; and (3) from a functionality perspective, the logic enables

specification of subset of behaviors from a given set of behaviors,

allowing the user to focus only on the set of behaviors that are of in-

terest.

89

Chapter 5. Expressing high-level policies in Portunes

5.1 Introduction

In Chapter 3 we defined a language to describe a Portunes model and used the road

apple attack as an example. However, we defined the goal of the road apple attack

informally, saying that ”the data ends up at the remote server”. In Chapter 4 we

presented this property more formally, as a satisfaction of the attribute ”the node
remoteServer contains the node serverData”. In this chapter we present the goal

as a formal property in the modal logic that should eventually hold in the Portunes

model, 〈◦〉c(remoteServer, serverData). The formal presentation of properties

in the model is suitable for defining complex goals because of the unambiguity of

formal statements.

Modal logic is the most convenient formal tool to express properties of a Portunes

model. Modal logic is usually used to specify and verify properties of concurrent

models. Properties in these models are specified by means of temporal and spatial

modalities. In Chapter 4 we presented algorithms to generate all possible behav-

iors that lead to the satisfaction of a single spatial property. In this chapter, we

will present a new modal logic which can be used to express spatial and temporal

properties of Portunes models.

We define the logic for Portunes in order to (1) describe adversarial goals and

(2) describe high-level policies which should hold for all evolutions of a Portunes

model. The logic for Portunes is primarily aimed to aid security auditors to as-

sess whether high-level policies always hold in the organization. Portunes can

search for a behavior where a person invalidates an high-level policy without in-

validating any low-level policies specified on the nodes. The logic can also help

penetration testers describe specific adversarial goal and isolate specific subsets

of attack scenarios.

The rest of the chapter is structured as follows. In Section 5.2 we provide mo-

tivating examples to describe the properties of interest in a Portunes model. In

Section 5.3 we provide an overview of related work and how the presented logic

differs. Section 5.4 specifies the predicates for net and net evolutions and in sec-

tion 5.5 we present the logic. Section 5.6 shows how the examples presented in

Section 5.2 can be specified using the logic and in Section 5.7 we conclude the

chapter.

90

5.2. Motivating examples

5.2 Motivating examples

In this section we present the requirements for the logic. The requirements are

distilled from observing a number of Portunes models obtained through a use

case and a series of penetration tests. In the use case, we modeled a five story

building and observed the low-level policies on individual objects and the general

high-level policies. We also performed a series of physical penetration tests using

social engineering (Chapter 6). From the attack traces obtained from the tests, we

looked at which properties a penetration tester might be interested in. We present

our findings in three general requirements.

For each requirement, we provide four motivating examples. The majority of the

examples present properties from the road apple example and are linked to the

nodes in Figure 3.4. The examples are numbered in the form x.y, where x speci-

fies the requirement the example is aiming to clarify, and y is the number of the

example. The first two examples from each requirement specify properties that

are useful for penetration testers, while the second two examples specify proper-

ties that are of interest to security auditors.

Requirement 1: The logic should be able to specify knowledge, location and
possession. We consider that an attack has occurred when an unauthorized person

eventually (a) learns confidential information, (b) reaches a restricted location or

(c) gains possession of an object.

Example 1.1 The server data reaches a remote server.

Example 1.2 The insider learns the employee’s password.

Management may also use these properties to describe high-level policies.

Example 1.3 The server data should never leave the secure server.

Example 1.4 Only an employee can enter the secure room.

Requirement 2: The logic should be able to distinguish among different evolu-
tions leading to the same goal. In a penetration test, where the quality of the

security is measured by how close the tester gets to the target (the number of cir-

cumvented layers of protection), the tester is interested in specific class of attack

scenarios.

Example 2.1 The insider enters the secure room and steals the data.

Example 2.2 The insider gives a dongle to the employee and steals the data.

91

Chapter 5. Expressing high-level policies in Portunes

P1=(logout(world).login(hall).eval(P
′)@secureServer)insider

P ′=(eval(login(remoteServer))@serverData)insider

P2=(eval(logout(hall).login(secureRoom))@insider)employee

P3=nil
P4=nil

Figure 5.1: A scenario where the employee lets the insider inside the secure room

The scenario defined by the process definitions in Figure 5.1 satisfies the prop-

erty of example 2.1, and example 2.2 is satisfied by the scenario defined by the

process definitions in Figure 3.15 that describe the road apple attack. Both sce-

narios eventually achieve the same result, namely the serverData ends up in the

remoteServer. A penetration tester might be more interested in scenarios sat-

isfying the first example where the insider as part of the data theft manages to

enter the secure room because in these scenarios she circumvents more protection

layers. Therefore, the logic should be able to distinguish such different evolutions.

From a defensive point of view, a security auditor might be interested in specifying

the proper execution order of procedures for accomplishing a task.

Example 2.3 A person can enter the secure room only through the hall.

Example 2.4 Whenever the employee receives money, the money is depo-

sited in the secure room.

Requirement 3: The logic should enable segregation of scenarios based on the
social interaction between people, namely trust and delegation. In Portunes trust

is represented through security policies on people, while delegation is described

through remote evaluation of processes on people. For example, P2 in Figure 5.1,

shows that the employee asks the insider to enter the secure room, or in other

words delegates a task to the insider, which the insider gladly accepts. However,

in the road apple attack (Figure 3.15 from Chapter 3), the insider gives the dongle

to the employee, and the employee trusts the insider sufficiently to accept the

dongle.

In some penetration tests the interaction between the tester and an employee is

forbidden by the rules of engagement, or it is considered as a risky action because

the outcome of the interaction is unpredictable. In other tests the main goal of the

tester is to investigate the reaction of the employees in specific situations. For the

first or for the second reason, penetration testers need to isolate attack scenarios

that include social interaction.

Example 3.1 The insider steals the data by tricking the employee.

92

5.3. Related work

Examples

Requirement 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

a y n y y y y y y y y n n

1 b n y n n n n n n n n n n

c n n n n n n n y n n n n

2 n n y y y y y y y y y y

3 n n n n n y n n y y y y

Figure 5.2: The requirements and the examples that motivate the requirements.

Example 3.2 The insider steals the data without interacting with people.

From defensive point of view, the security auditor might want to check policies

on the hierarchy of the organization:

Example 3.3 No person should delegate tasks to the boss.

Example 3.4 Only the boss should delegate tasks to other employees.

In Figure 5.2 we provide an overview of the requirements and show which prop-

erty the logic should be capable to express to specify each motivating example.

For example, expressing the property in Example 3.2 requires the logic to be able

to express location, to show that the data is in a server controlled by the insider

(requirement 1.a), to segregate among subsets of net evolutions, to select only

evolutions where the insider tricks the employee (requirement 2) and to express

interactions between people, to show the interaction between the insider and the

employee (requirement 3).

5.3 Related work

The modal logic to reason about properties of a Portunes model and formally

present goals of attack scenarios is inspired by Hennesy-Milner logic (HML) [56]

and the modal logic for mobile agents [36].

In HML the temporal properties of the processes are expressed by the diamond

operator 〈a〉φ indexed with a transition label. A process P satisfies 〈a〉φ if there

exists a label a and a process P ′ such that P
a−→ P ′ and P ′ satisfies φ. The

transition labels in HML are considered as basic entities and are syntactically

characterized by the label of the modal operator.

93

Chapter 5. Expressing high-level policies in Portunes

The modal logic of De Nicola enriches HML logic with more refined action pred-

icates and state formulae. The diamond operator, instead of being indexed with

basic labels a, is indexed with abstract actions A, which denote a set of basic

labels, the localities involved in the transition and the information transmitted.

Thus, the abstract operators denote properties of the transition labels. A net N
satisfies a formula 〈A〉φ if there exists a label a and a net N ′ such that a satisfies

A, N
a� N ′ and N ′ satisfies φ.

The logic for mobile agents allows the specification of mobile system properties

specified in Klaim. Our approach uses similar notation and constructs, but adapts

the semantics of the logic to the constructs of the Portunes language.

First, the Portunes language does not have variables nor logical localities, but does

have node types. Thus, the predicates for variables are absent, we do not distin-

guish between physical and logical localities, and we introduce the type predicate

u.

Second, the Klaim language has a different set of actions, thus the predicates for

Klaim actions are replaced by predicates that reflect Portunes actions. Thirdly,

the Portunes language does not have tuples, thus all tuple predicates from the

transition labels and transition label predicates are absent. Because Portunes does

not use variables nor logical spatialities all binding constructs and mapping are

also absent from the logic.

Third, the modal logic for mobile agents contains state formulae to specify the

distribution of the tuples in the system. Since the Portunes language does not

have tuples, they are also missing from the logic presented in this chapter.

Finally, the diamond operator has a different meaning compared to the one used

in HML and the logic for mobile agents. A net N satisfies a formula 〈A〉φ if there

exists a label a that satisfies A, the net can eventually transition using the action a

into a net N ′ (N
a
=⇒+

N ′) and N ′ satisfies φ. Thus, a net will satisfy the formula

not only if the action can occur in the next transition, but also if the action can

occur in one of the further transitions.

5.4 Net and net evolution predicates

Motivated by the examples above, we now present the logic for expressing proper-

ties of a Portunes model. First we introduce the syntax of predicates for locations,

actions and processes and provide their semantics. Using these predicates we can

specify properties on process definitions for a given net. Next, we present the

94

5.4. Net and net evolution predicates

predicates on the transition labels that describe the net evolutions. Finally, we

present the semantics of the modal logic used for describing the properties of a

given net.

5.4.1 Net predicates

Syntax of location predicates:

lp ::= 1L | u | l

Location predicates can be a generic location (1L), a type (u) or a location (l). L
is the universe of node names, LN ⊆ L is a finite set of names for a given net N
and LocN is a finite set of location predicate atoms for a given net N .

Examples of location predicates are: the predicate insider is satisfied by all nodes

named insider, the predicate Space is satisfied by all nodes of type Space and 1L
is satisfied by all nodes in the net.

Syntax of action predicates:

ap ::= lt(lp) | lt′(lp) | ln(lp) | e(pp)@lp

Every action from the Portunes language is represented by a predicate. The pred-

icate lt(lp) is satisfied by all logout(l) where l satisfies the location predicate lp
and lt′(lp) is satisfied by all logout′(l) where l satisfies the location predicate lp.

Similarly, the action predicate ln(lp) is satisfied by all login(l) actions where l sat-

isfies the location predicate lp and e(pp)@lp is satisfied by all eval(P)@l, where

the process P satisfies the predicate pp and the node l satisfies the predicate lp. A
is a universe of actions, AN ⊆ A is a finite set of actions in a given net N and

ActN is a finite set of action predicates for a given net N .

A few examples of action predicates are: the predicate lt(insider) is satisfied by

all the actions logout(insider) , ln(Space) is satisfied by all login actions that

perform login to a node of type Space, and e(1p)@employee is satisfied by all

eval actions that delegate a process to a node that satisfy the predicate employee.

Syntax of process predicates:

pp ::= 1P | pp ∧ pp | aplp → pp

95

Chapter 5. Expressing high-level policies in Portunes

The process predicate 1P is satisfied by all processes and a conjunction of two

process predicates pp ∧ pp is satisfied by processes that satisfy both predicates.

The predicate aplp → pp is satisfied by processes that contain an action satisfying

the action predicate ap with an origin node satisfying the predicate lp followed by

a process that satisfies the pp predicate. We define P as a universe of processes,

PN ⊆ P as a finite set of processes in a given net N and ProcN as a finite set of

process predicates for a given net N .

For example, the net:

N ::= insider ::δ{money}P || employee ::δ{secret}Q || hall ::δ{insider,employee}

defines an environment where an employee and an insider are in the same hall.

The intention of the insider to give money to the employee can be presented

through the process predicate:

(e(ln(employee)insider → 1P)@moneyinsider) → 1P .

The process predicate has the form aplp → pp, where the action predicate ap is

e(ln(employee)insider → 1P)@money, the origin predicate of ap is insider and

pp is the predicate 1P . The action predicate ap is of the form e(pp)@lp where the

process predicate is again of the from aplp → pp, or e(ln(employee)insider → 1P
and the locality predicate of the form money. This process predicate will be satis-

fied by all processes originating from insider that contain an action eval(P)@money.

Moreover the process P must contain an action login(employee) originating from

insider. Similarly the intention of the employee to give a secret to the insider is

presented through the predicate:

(e(ln(insider)employee → 1P)@secretemployee) → 1P .

Two sets of processes P and Q that satisfy these predicates:

P = eval(logout(insider)...login(employee))@moneyinsider

Q = eval(logout(employee)...login(insider))@secretemployee

5.4.2 Semantics of state predicates

The syntax of the predicates, helps in specification of nets based on the intentions

of the nodes within. In other words, we can specify properties of processes within

the nodes of the net.

The semantics of the predicates are presented in the form of the functions: L :

96

5.4. Net and net evolution predicates

L : LocN → 2LN AC :ActN → 2AN

AC�lt(lp) � = {logout(l) | l∈L�lp�}
L �1L� = LN AC�lt′(lp)� = {logout′(l) | l∈L�lp�}
L � u � = {l | T (l)=u} AC�ln(lp)� = {login(l) | l∈L�lp�}
L � l � = {l} AC�e(pp)@lp� = {eval(P)@l | l∈L�lp�, P ∈P�pp�}

P : ProcN → 2PN

P �1P � = PN

P �pp1 ∧ pp2� = P�pp1� ∩ P�pp2�

P �aplp→pp� = {P | ∃a,l,Q :a∈AC�ap�, l∈L�lp�, origin(a)= l, P
a−→+

Q,Q∈P�pp�}

Figure 5.3: Interpretation of location, action and process predicates

LocN → 2LN ,AC:ActN → 2AN ,P : ProcN → 2PN , which take a predicate lp,

pp or ap and return a set of locations, processes and actions that satisfy the pred-

icates respectively. The sets LN , AN and PN are derived from a named Portunes

model presented by a specific net N . The semantics are defined in Figure 5.3.

The relation P
a−−→+

Q is satisfied when: ∃P ′ : P →∗ P ′, P ′ a−→ Q, where →∗ is

the reflexive, transitive closure of →, defined in Section 3.5.4.

L �1L� returns the set of locations LN , L �u� returns a set of locations that belong

to a specific type and L �l� returns a specific location l ∈ LN . P�1P � returns

all processes in the net and P�pp1 ∧ pp2� returns the processes that satisfy both

predicates pp1 and pp2. P�aplp→ pp� returns the processes that can execute an

action satisfying the predicate ap, using an origin satisfying the predicate lp, and

then evolve in a process that satisfies the predicate pp.

A process P from a net N satisfies the predicate pp, iff P ∈P�pp�. Analogously,

action a from a net N satisfies the predicate ap iff a ∈ AC�ap� and a location l
from a net N satisfies the predicate lp iff l∈L�lp�.

5.4.3 Transition label predicates

The process predicates present a set of actions that a single process might perform,

and not actual net evolutions. In other words, a process predicate specifies an

intention not an execution.

The transition labels, which present evolutions of a net are defined in Figure 5.4.

We use LabN to denote a finite set of label predicates defined over a given net N

97

Chapter 5. Expressing high-level policies in Portunes

A ::= ◦ lab ::= netcopy (l, l, l)
| A1 ∪ A2 | neteval (l, P, l)
| A1 ∩ A2 | netmove(l, l, l)
| A1 − A2

| src (lp)
| trg (lp)
| prt (lp)
| nc (lp1, lp2, lp3)
| ne (lp1, pp, lp2)
| nm(lp1, lp2, lp3)

Figure 5.4: Syntax of transition labels and transition label predicates

and LPN to denote a finite set of transition labels. The function that defines the

meaning of the label predicates A : LabN → 2LPN is given in Figure 5.5.

We define the syntax and semantics of label predicates, where the locations and

processes are replaced by location and process predicates. We use ◦ to denote all

transition labels and ∪, ∩ and − to denote union, intersection and exclusion of two

sets of transition labels. The predicates src, prt and trg denote transition labels

which have a specific source, parent or target node. The predicate nc(lp1, lp2, lp3)
denotes transitions labeled netcopy where the first parameter of the transition label

satisfies the location predicate lp1, the second parameter lp2 and the third param-

eter lp3. Similarly, ne and nc denote the neteval and netmove transition labels

respectively.

Using the transition label predicates, we can specify sets of transitions labels based

on a property they posses. For example, the predicate prt(insider) is satisfied by

all transition labels which add or remove an object or data from the node sat-

isfying the location predicate insider, trg(employee) is satisfied by all transi-

tion labels in which an object or data is given, or a task is delegated to a node

satisfying the location predicate employee and nm(Person, 1L, secureRoom)−
nm(employee, 1L, secureRoom) is satisfied by all transition labels in which node

of type Person other than the node satisfying the predicate employee move to a

node that satisfies the predicate secureRoom.

98

5.5. Logic for Portunes models

A : LabN → 2LPN

A � ◦ � = LPN
A �A1 ∪A2� = A�A1� ∪ A�A2�
A �A1 ∩A2� = A�A1� ∩ A�A2�
A �A1 −A2� = {a|a∈A�A1�, a �∈ A�A2�}
A � src(lp) � = {a|a∈A�nm(l,1L,1L)�∪A�nc(l,1L,1L)�∪A�ne(l,1P ,1L)�, l∈L�lp�}
A � trg(lp) � = {a|a∈A�nm(1L,1L, l)�∪A�nc(1L,1L, l)�∪A�ne(1L,1P , l)�, l∈L�lp�}
A � prt(lp) � = {a|a∈A�nm(1L, l,1L)�∪A�nc(1L, l,1L)�, l ∈ L �lp�}
A �nm(lp1, lp2, lp3)� = {netmove(l1, l2, l3)| l1 ∈ L �lp1�, l2 ∈ L �lp2�, l3 ∈ L �lp3�}
A �ne(lp1, pp, lp2) � = {neteval(l1, P, l3) | l1 ∈ L �lp1�, l2 ∈ L �lp2�, P ∈ P �pp �}
A �nc(lp1, lp2, lp3) � = {netcopy(l1, l2, l3) | l1 ∈ L �lp1�, l2 ∈ L �lp2�, l3 ∈ L �lp3�}

Figure 5.5: Semantics of transition label predicates

5.5 Logic for Portunes models

Definition 15. (Hennessy-Milner Logic) The set of HML formulas [56] for Por-
tunes is given by the BNF grammar:

φ ::= tt | ¬φ | φ ∧ φ | c(lp, lp) | 〈A〉φ

The formula tt is always satisfied. The formula ¬φ is satisfied by a net that does

not satisfy φ, while φ1 ∧ φ2 is satisfied by a net that satisfies both φ1 and φ2. The

formula c(lp1, lp2) is satisfied by a net in which a node l2 with a name satisfying

the predicate lp2 belongs to the set s of a node l1 satisfying the predicate lp1,

meaning node l1 contains node l2. Finally, 〈A〉φ is satisfied by a net N that has

a transition label that satisfies A and after the transition satisfies the formula φ.

Formulas like [A]φ and φ1 ∨ φ2 can be derived from the logic: [A]φ = ¬〈A〉¬φ
and φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2).

For example, c(remoteServer, serverData) is satisfied by all nets where the

server data is located in the remote server and 〈nm(insider, hall, secureRoom)〉tt
is satisfied by all nets where the insider moves from the hall to the secure room.

We provide more examples of the formulas in the following section.

Let Net be a set of all nodes for a given network N , and Φ the set of all the

formulas. The semantics is defined using the function M : Φ → 2Net (Figure 5.6).

A net N satisfies a formula φ if and only if N ∈ M �φ�, and we write N |= φ.

We write N
a

=⇒+
N1 iff ∃N ′ : N =⇒∗ N ′, N ′ a

=⇒ N1. where =⇒∗ is the reflexive,

transitive closure of =⇒ defined in Section 3.5.5.

The above formulas allow us to specify properties of the net for a single state, for

all states in which the net evaluates and properties on the net evolutions.

99

Chapter 5. Expressing high-level policies in Portunes

M : Φ → 2Net

M �tt� = Net
M �¬φ� = Net−M �φ�
M �φ1 ∧ φ2� = M �φ1� ∩M �φ2�

M �〈A〉φ� = {N | ∃a,N1 : N
a

=⇒+
N1, a ∈ A �A�, N1 ∈ M �φ�}

M �c(lp1, lp2)� = {N | ∃l1, l2 : l2 ∈ childrenN (l1), l1∈L �lp1�, l2∈L �lp2�}

Figure 5.6: Semantics of the logic

5.6 Using the logic to specify security policies

The logic looks straightforward but it can be difficult to develop an intuition for the

meaning of the operators. In this section we show that sometimes it is difficult to

find the correct formalization of a high-level policy into a formula. For example,

consider the net N0 from Figure 5.7 and the high-level policy ”Sensitive informa-

tion should not leave the hardened servers of the organization”, which is a gener-

alization of Example 1.3, where the serverData is of type SensitiveInfo (sen-

sitive information) and secureServer of type HardServer (hardened server).

The net N0 consists of a room containing two servers, one of which is hardened

(secserver) and one is not (normalserver). The hardened server contains two

nodes (secdata1 and secdata2) both of which are of type SensitiveInfo. From

N0 there are 3 transitions possible, leading to the nets N1, N2 and N3. The nets N0,

N1 and N2 do not satisfy the policy, because from these nets some of the sensitive

information can leave the hardened server. The net N3 satisfies the policy because

the hardened server has no sensitive information that can leave. The Portunes nets,

together with the node types are presented in Figure 5.7.

A first attempt to formalize the high-level policy into our logic would be:

φ1 = ¬c(1L, SensitiveInfo)

The predicate c(1L, SensitiveInfo) in the formula is satisfied by every net where

a node contains another node of type SensitiveInfo. The negation in φ1 states

that the nets that satisfy the predicate do not satisfy the formula and thus violate

the policy. Every net that contains sensitive information will violate the policy,

no matter where the sensitive information is located. In the example net N0, the

hardened server contains sensitive information, thus, the net would not satisfy the

policy, hence N0 �|= φ1. This can be proved as fallows:

M�φ1�=Net−M�c(1L, SensitiveInfo)�={N0, N1, N2, N3}−{N0, N1, N2, N3} = ∅

However, this is not the intention of the high-level policy. The second attempt is

100

5.6. Using the logic to specify security policies

1 room

2 secserver

3 normalserver

4 secdata1

5 secdata2

2 3

4

1

5

2 3

4

1

5

2 3

4

1

5

2 3

4

1

5

N0 N3N1 N2

room ::
(⊥,⊥,∅) �→ {ln,lt}
{secserver, normalserver} nil

|| secserver ::
(⊥,⊥,∅) �→ {ln,lt}
{secdata1, secdata2} nil

|| normalserver ::
(⊥,⊥,∅) �→ {ln,lt}
{} nil

|| secdata1 ::
(⊥,⊥,∅) �→ {ln,lt}
{} [logout(secserver).login(normalserver)]secdata1

|| secdata2 ::
(⊥,⊥,∅) �→ {ln,lt}
{} [logout(secserver).login(normalserver)]secdata2

T = {Space,HardServer, InsecureServer, SensitiveInfo}

��ln= {(Space,HardServer), (Space, InsecureServer),
(HardServer, SensitiveInfo), (InsecureServer, SensitiveInfo)}

T (room) = Space,

T (secserver) = HardServer,

T (normalserver) = InsecureServer,

T (secdata1) = T (secdata2) = SensitiveInfo,

Figure 5.7: A net with two servers and two files.

to make an exception for the hardened servers, as follows:

φ2 = ¬(c(1L, SensitiveInfo) ∧ ¬c(HardServer, SensitiveInfo))

This formula holds only if the current net has a node containing the sensitive

information and if that node is not a hardened server. However, this formula

checks for the satisfaction at the current state of the net, rather than all future net

evolutions. Although the net from the example satisfies this formula (N0 |= φ1),

during the next net transitions, the sensitive data will leave the hardened server,

which is against the high-level policy (N3 �|= φ2). We can prove this as follows:

M �φ2�= Net−M �c(1L, SensitiveInfo) ∧ ¬c(HardServer, SensitiveInfo)�
= Net− (M �c(1L, SensitiveInfo)� ∩M �¬c(HardServer, SensitiveInfo)�)
= Net− (M �c(1L, SensitiveInfo)� ∩ (Net−M �c(HardServer, SensitiveInfo)�))

101

Chapter 5. Expressing high-level policies in Portunes

= {N0, N1, N2, N3} − ({N0, N1, N2, N3} ∩ ({N0, N1, N2, N3} − {N0, N1, N2}))
= {N0, N1, N2}

The third attempt uses a temporal operator that will check whether the formula

holds for all future net transitions would not solve the problem.

φ3 = ¬〈◦〉(c(1L, SensitiveInfo) ∧ ¬c(HardServer, SensitiveInfo))

From the semantics in Figure 5.6, c(HardServer, SensitiveInfo) will hold if

there is at least one relation in the net that satisfies the predicate. Thus, the formula

will be satisfied even by nets where all but one piece of sensitive information is in

a hardened server, which is a violation of the high-level policy.

M �φ3� = Net−M �〈◦〉(c(1L, SensitiveInfo) ∧ ¬c(HardServer, SensitiveInfo))�

= Net− {N | ∃a,N1 : N
a

=⇒+
N1, a ∈ A �◦�,

N1∈M �c(1L, SensitiveInfo)∧¬c(HardServer, SensitiveInfo)�}
= {N0, N1, N2, N3} − {N0, N1, N2} = {N3}

In the example, the formula seems to deliver the required result, N0 �|= φ3. How-

ever, under closer inspection, one can notice that for the current model the nets

N1 and N2 do not satisfy the policy only because they eventually transition into

N3 where all data has left the hardened server. There can be models where only

some of the sensitive data leaves the hardened servers (for example, the current net

without one of the process definitions). If only one sensitive file leaves the hard-

ened server, the resulting net will still satisfy the formula φ3, but will be against

the high-level policy. To represent the high-level policy into our logic we need

to look at a behavior that causes the sensitive information to leave the hardened

servers.

φ4 = ¬〈nm(SensitiveInfo,HardServer, 1L)〉tt

This formula would solve the issue both because it identifies the transitions where

sensitive information is moved from a hardened server and because it is applied

to all net transitions.

M �φ4�= Net−M �nm(SensitiveInfo,HardServer, 1L)〉tt�
= {N0, N1, N2, N3} − {N0, N1, N2} = {N3}

Although this policy will identify all behaviors where the information is moved

from a hardened server, it still does not include the behaviors where the sensitive

information is copied. Thus, the final formula that reflects the high-level policy

is:

φ5 = ¬〈nm(SensitiveInfo,HardServer, 1L)〉tt ∧
¬〈nc(SensitiveInfo,HardServer, 1L)〉tt

which is quite different from the initial formula ¬c(1L, SensitiveInfo).

102

5.6. Using the logic to specify security policies

5.6.1 Examples revisited

In section 3.5.2 we used the Portunes language to describe the road apple attack

formally, an attack where the adversary uses physical, social and digital means to

gain possession of sensitive data. In this section we use the road apple and the

examples from the previous section to (1) describe adversarial goals and (2) for-

mally define high level policies which should hold for all evolutions of the net.

Example 1.1 The server data reaches a remote server.

〈◦〉c(remoteServer, serverData)

Example 1.2 The insider learns the employee’s password.

〈◦〉c(insider, employeePassword)

In Example 1.1 and 1.2 the goal is defined by a node being at a specific loca-

tion. Using similar logic constructs, we can express goals including knowledge of

information (person contains data) and possession (person contains object). The

usage of the 〈◦〉 means we that are not interested in the initial state of the net, but

in an eventual state in the future.

Example 1.3 The server data should never leave the secure server.

¬〈nm(serverData, secureServer, 1L)〉tt ∧
¬〈nc(serverData, secureServer, 1L)〉tt

Example 1.4 Only an employee can enter the secure room.

¬〈nm(Person, 1L, secureRoom)− nm(Employee, 1L, secureRoom)〉tt

Examples 1.3 and 1.4 describe high-level policies which should never be invali-

dated. Here we also see how location (similarly knowledge and possession) can

be used to define a high-level policy.

In Example 1.3, the transition label predicate nm(serverData, secureServer, 1L)
holds for all behaviors that contain a netmove action netmove where the server

data from the secure server moves to any other location in the net, regardless of

the state the net will evolve into(tt). The negation of this predicate results in all

allowed behaviors in the net that do not violate the policy. Because the data can

be copied instead of moved, the formula contains a conjunct transition label pred-

icate for behaviors that contain the netcopy action nc. In Example 1.4, the first

103

Chapter 5. Expressing high-level policies in Portunes

part of the transition label predicate nm(Person, 1L, secureRoom) holds for ev-

ery behavior where node of type Person moves into the secure room. The second

part of the predicate, nm(Employee, 1L, secureRoom), holds for every behavior

where a node of type Employee moves into the secure room. The subtraction of

these two predicates results into formula that holds true for all behaviors where a

person moves in the secure office and is not an employee. The negation of this

formula is satisfied by the all behaviors in the net except when a non-employee

enters the secure room.

Example 2.1 The insider steals the data by entering the secure room.

〈nm(insider, 1L, secureRoom)〉(〈◦〉c(remoteServer, serverData))

Example 2.2 The insider steals the data by giving the employee a dongle.

〈nm(dongle, 1L, employee)〉(〈◦〉c(remoteServer, serverData))

In the above two examples, we define two strategies how the insider might get

access to the data. Both strategies might be satisfied by a single net evolution. For

example, the insider enters the office and then gives the dongle to the employee, or

vice versa. Adding additional desired or non-desired conditions further segregates

the possible evolutions of the net, allowing the penetration tester to focus only on

those evolutions she is interested in.

In Example 2.1, the first transition label predicate nm(insider, 1L, secureRoom)
holds only for behaviors that contain an action where an insider enters the secure

room. The second part of the formula 〈◦〉c(remoteServer, serverData) holds

for all behaviors in which eventually the remote server contains the server data.

Thus, the whole formula holds for the behaviors where the insider first moves to

the secure room, and eventually reaches a state where the remote server contains

the server data. In Example 2.2 the structure of the formula is similar. The be-

haviors for which this formula holds have an action where the dongle is given

to the employee, and then eventually the remote server contains the server data.

Note that in both examples there might be no causality between the actions in the

behavior. For example, there might be a behavior where the employee receives

a dongle, but this action does not contribute to the server data ending up in the

remote server.

Example 2.3 A person can enter the secure room only through the hall.

¬〈nm(Person, Space, secureRoom)− nm(Person, hall, secureRoom)〉tt

104

5.6. Using the logic to specify security policies

Example 2.4 Whenever the employee receives money, the money is deposited in

the secure room.

¬(〈nm(money, 1L, Employee)〉¬(〈nm(money, Employee, secureRoom)〉tt))

In Examples 2.3 and 2.4, the transition label predicates are satisfied only by a spe-

cific subset of the transition labels. Namely, all locations from where an employee

can move inside the room, except the hall are forbidden. Or, as is the case of ex-

ample 2.4, the property specifies only net evolutions where an employee receives

money and then the money is eventually sent to the secure room.

In Example 2.3, the transition label predicate consists of two parts. The first part,

nm(Person, Space, secureRoom), is satisfied by all behaviors where a node

of type Person enters the secure room, while the second part of the predicate,

nm(Person, hall, secureRoom), is satisfied by all behaviors where a node of

type Person enters the secure room through the hall. The whole transition la-

bel predicate is satisfied by all behaviors where a node of type Person enters the

secure room except if he enters through the hall. The negation of the whole for-

mula is satisfied by all behaviors, except the ones where a node of type Person
enters the secure room from any other place than the hall. In Example 2.4, the

first transition label predicate nm(money, 1L, Employee) is satisfied by all be-

haviors where the employee receives money. The second transition label pred-

icate nm(money, Employee, secureRoom) is satisfied by all behaviors where

the money is deposited in the secure room. When both predicates are connected

with a negation between them, the resulting formula is satisfied by all behaviors

where the employee receives money, but the money are not eventually deposited

in the secure room. Finally, the negation in front of the first transition label pred-

icate makes the whole formula hold for all behaviors except the ones where the

employee receives money, but the money are not eventually deposited in the se-

cure room.

Example 3.1 The insider steals the data by tricking the employee.

〈ne(insider, 1P , Employee)〉(〈◦〉c(remoteServer, serverData))

Example 3.2 The insider steals the data without interacting with people.

(¬〈ne(insider, 1P , P erson)〉)(〈◦〉c(remoteServer, serverData))

In some penetration tests, the rules of engagement forbid any interaction with the

employees. In other tests, the main goal is to see the resilience of the employees

against social engineering. Examples 3.1 and 3.2 show how we can segregate

105

Chapter 5. Expressing high-level policies in Portunes

attack scenarios that include contact with a specific person, or contain no contact

with people.

The structure of the formulas in Example 3.1 and 3.2 are identical with the ones

in Example 2.1 and 2.2. The first formula is satisfied by all behaviors where the

insider delegates a process to an employee, and eventually, the remote server con-

tains the server data. Similarly, the second formula is satisfied by all behaviors

where the insider does not delegate any process to a person, but still eventually

the remote server contains the server data.

Example 3.3 No person should delegate tasks to the boss.

¬〈ne(Person, 1P , boss)〉tt

Example 3.4 Only the boss should delegate tasks to other employees.

¬〈ne(Employee, 1P , Employee)− ne(boss, 1P , Employee)〉tt

In Example 3.3 and 3.4 we show how the social aspects of the Portunes model can

be used as high-level policies. Finding a delegation from an employee to a boss,

or from an employee to another employee would mean that there is inconsistency

in the policies imposed on the employees with the high-level policies.

The formula in Example 3.3 holds for all behaviors except the ones where a per-

son delegates a task to the boss. In Example 3.4 the transition label predicate

ne(Employee, 1P , Employee) is satisfied by all behaviors where there is an del-

egation of a task between two employees. The predicate ne(boss, 1P , Emploee)
holds for all behaviors where the boss delegates a task to an employee. The for-

mula that is a result of the subtraction between the two predicates holds for all

behaviors where a task is delegated to a employee, and the person that delegates

the task is not the boss. Finally, the whole formula state is satisfied by all behav-

iors in the net, except the behaviors in which an employee rather than the boss

delegates a task.

The examples 1.1, 1.2, 2.1, 2.2, 3.1 and 3.2 present undesirable properties of

behaviors, by defining a set of a) transitions 〈A〉tt, b) states 〈◦〉c(lp, lp) or c)

transitions and states 〈A〉(〈◦〉c(lp, lp). The logic can help penetration testers to

select malicious goals and select from a set of possible attack the ones that yield

the greatest chance of success. Similarly, by using a negation in the formulas, we

can specify all behaviors in the net that do not violate a high-level security policy

(examples: 1.3, 1.4, 2.3, 2.4, 3.3, 3.4). Such behaviors can help auditors to define

multiple policies, and get a set of all allowed behaviors in the organization.

106

5.7. Conclusion

5.6.2 Other uses of the logic

In this chapter we showed how the logic can be used to describe behaviors using

temporal operators, specify complex goals using spatial operators and a combi-

nation of both behaviors and goals. The logic formulas can be used to describe

high-level policies which should hold for every state of the model.

Another usage of the formulas is to aid the analysis from Chapter 4. The gener-
atePartialAttack algorithm may use the formulas as a heuristic in searching only

for the behaviors that have the property specified by the formulas, effectively cut-

ting the search space.

Finally, the formulas from the logic can be used as a fine grained search for a

specific behavior from a set of behaviors. For example, if a set of behaviors satisfy

a goal, the user can search for a subset of behaviors within the found behaviors,

by providing additional formulas stating additional properties of interest.

We partially implemented the logic in the Portunes tool, by allowing multiple

goals composed by combining the ∨ an ∧ state operators in the specification of a

goal. We consider the full implementation of the logic into the Portunes tool as

future work.

5.7 Conclusion

In this chapter we presented a variant of Hennesy-Milner logic and the modal logic

for mobile agents and used the logic to express state and transition properties of

the Portunes language. The logic lacks variable, tuple and logical locality predi-

cates, predicates for Klaim actions are replaced by predicates that reflect Portunes

actions and the diamond operator has a different meaning compared to the other

variations of the HML logic.

The logic is designed to specify a set of desired and undesired behaviors and states

of Portunes models. These behaviors and states are represented as properties of

Portunes models that (1) describe adversarial goals and (2) formally define high-

level policies which should hold for all evolutions of the net. The logic lacks

recursion and thus cannot express arbitrary repetition of actions because we are

interested in a single achievement of an adversarial goal or invalidation of a policy.

For example, if the analysis finds an attack scenario, we assume the scenario can

be repeated multiple times.

In the first part of the thesis we showed how to describe and analyze behaviors

107

Chapter 5. Expressing high-level policies in Portunes

that span the three security domains. We presented low-level policies as pred-

icates, high-level policies as modal logic formulae and describe behaviors that

can occur as process definitions. We also provide an analysis that assesses the

completeness of the policy refinement by taking both defensive (auditing) and

offensive (penetration testing) standpoint.

The main contribution of the first part of the thesis is the mapping of security as-

pects of the physical and social domain together with the digital domain into a

single framework named Portunes. The framework consists of a graph and a lan-

guage inspired by the Klaim family of languages. To capture the three domains

efficiently, Portunes is able to represent 1) physical properties of elements, 2) mo-

bility of objects and data, 3) identity, credential and location based access control

and 4) trust and delegation between people.

We chose the abstraction level of the three domains to be sufficiently high to

be easy to use, but still sufficiently detailed to provide useful results. One can

envision extending the framework with constructs such as negotiation between

people, behavioral patterns or detection mechanisms, to increase the detail of the

produced behaviors.

To bring the framework closer to practitioners, we provided a logic to help users

specify high-level policies and adversarial goals and a graphical implementation

of the language in a tool. This approach allows generating and analyzing attack

scenarios which span all tree domains.

The applicability of the Portunes framework was demonstrated using the example

of the road apple attack, showing how an insider can attack without violating

existing security policies by combining actions from all three domains. We also

showed how Portunes can be used to generate attack scenarios automatically for

penetration testing teams that use physical access and social engineering to gain

possession of a digital asset. So far, we found out that the Portunes tool can

produce sufficiently detailed realistic attack scenarios for testers to execute. We

describe our findings on this matter in greater detail in Chapter 8.

The behaviors generated by the analysis can be used in several areas. In quantita-

tive risk assessment, risk estimates are based on a number of attacks on the asset

obtained through brainstorming. The Portunes tool can automatically generate a

complete list of attacks, greatly improving the security risk estimate for an asset.

In designing new socio-technical systems it is crucial (and sometimes mandatory)

to show that the system is behaving in accordance with a set of high-level policies.

Portunes can aid in this analysis by generating possible scenarios that can violate

these policies.

In outsourcing scenarios, the vendor to whom a task is outsourced needs to demon-

108

5.7. Conclusion

strate that the data of the user is stored in a secure location and show that all

possible scenarios are considered to protect the confidentiality of the data from

adversaries and internal staff members. Portunes can aid in formally providing

this proof. In security awareness training programs, it is advisable to use facility

specific simulations to teach the employees on possible threats to the organiza-

tion. Portunes can generate these simulations automatically and greatly speed up

the process of preparing the program.

109

110

Part II

Policy enforcement

The second part of this thesis focuses on testing policy enforcement. In the first

part of the thesis, we used the road apple attack, where an insider gives a dongle

to an employee, as a running example. This example is interesting because it uses

policies from all three domains and is challenging to model. When testing the

enforcement of the policies, it is harder for the tester to obtain an asset from an

employee rather than give one. Therefore, as a running example of the second

part we explore the problem of protecting laptops from theft. This example is

more suitable than the road apple attack because it is harder for a tester to take a

laptop from an employee, than to give a dongle to an employee.

Chapter 6 proposes two methodologies for performing physical penetration tests

using social engineering where the tester needs to obtain an asset. In this chapter

we provide a set of requirements a penetration testing methodology should satisfy,

and evaluate the two proposed methodologies based on these requirements. The

methodologies focus on obtaining a marked asset from the premises of a targeted

organization.

Chapter 7 assesses the effectiveness of security mechanisms in the physical and

social domain. Using the methodologies provided in Chapter 6, we orchestrated

more than 30 penetration tests. We also analyzed the logs from stolen laptops in 2

universities over a period of two years. The results from the penetration tests and

the analysis of the logs provided us with an insight of the effectiveness of CCTV,

access control and security awareness of the employees as mechanisms for pro-

tecting assets in an organization.

Chapter 8 proposes a practical assignment for teaching students penetration test-

ing skills. During a period of three years we provided a practical assignments

111

for first year master students in computes security. As part of this assignment,

students were provided with the opportunity to perform physical penetration tests

using social engineering, offline attacks on laptops and online attacks on vulner-

able servers. We analyze the implications of the assignment to the students and

to the employees and argue that such assignments are useful for both the students

and organization if executed with diligence.

112

Chapter 6

Methodologies for Physical
Penetration Testing using Social
Engineering ∗

Penetration tests on IT systems are sometimes coupled with physical

penetration tests and social engineering. In physical penetration tests

where social engineering is allowed, the penetration tester directly

interacts with the employees. These interactions are usually based on

deception and if not done properly can upset the employees, violate

their privacy or damage their trust toward the organization and might

lead to law suits and loss of productivity.

In this chapter, we propose two methodologies for performing a phys-

ical penetration test where the goal is to gain an asset using social

engineering. These methodologies aim to reduce the impact of the

penetration test on the employees. We used these methodologies to

orchestrate 32 penetration tests over a period of three years.

∗This chapter is a minor revision of the paper ”Two Methodologies for Physical Penetration

Testing using Social Engineering” [5] published in the Proceedings of the 26th Annual Computer

Security Applications Conference (ACSAC’10), pages 399-408, ACM, 2010

113

Chapter 6. Methodologies for Penetration Testing using Social Engineering

6.1 Introduction

A penetration test can assess both the IT security and the security of the facility

where the IT systems are located. If the penetration tester assesses the IT security,

the goal is to obtain or modify marked data located deep in the organizations

network. Similarly, in testing the physical security of the location where the IT

system is located, the goal of the penetration test is to obtain a specific asset,

such as a laptop or a document. Physical and digital penetration tests can be

complemented with social engineering techniques, where the tester is allowed to

use knowledge and help from the employees to mount the attack.

In digital penetration tests the resilience of an employee is measured indirectly,

by making phone queries or sending fake mail that lure the employee to disclose

secret information. These tests can be designed in an ethical manner [45] and

within the legal boundaries [94]. However, measuring the resilience of an em-

ployee against social engineering in a physical penetration test is direct and per-
sonal. When the tester enters the facility of the organization and directly interacts

with the employees, she either deceives the employee, trying to obtain more in-

formation about the goal, or urges the employee to help her, by letting the tester

inside a secure area or giving the tester a credential. The absence of any digital

medium in the communication with the employees makes the interaction between

the penetration tester and the employee intense, especially if the employee is asked

to break company policies.

There are three main consequences from personal interaction between the tester

and the employee. First, the employee might be stressed by having to choose be-

tween helping a colleague and breaking the company policies. Second, the tester

might not treat the employee respectfully. Finally, when helping the penetration

tester to enter a secure location, the employee loses the trust from the people who

reside in the secure location. For example, employees might stop trusting the sec-

retary when they find out she let an intruder into their office. To avoid ethical

and legal implications, organizations may avoid physical penetration testing with

social engineering, leaving themselves unaware of attacks where the attacker uses

non-digital means to attack the system.

This chapter tackles the problem how to perform a physical penetration test using

social engineering in the most respectful manner, while still getting results that

lead to improving the security of the organization. The contribution of this chap-

ter is two methodologies for physical penetration tests using social engineering

where the goal is to gain possession of a physical asset from the premises of the

organization. Both methodologies are designed to reduce the impact of the test on

the employees. We used these methodologies to perform 32 penetration tests over

114

6.2. Related work

a period of three years, where students tried to gain possession of marked laptops

placed in buildings of two universities in The Netherlands. Detailed information

on the execution of these tests is presented in Chapter 7.

The rest of the chapter is structured as follows. In section 2 we present related

work and in section 3 we set the requirements for the methodologies. Sections 4

and 5 outline the methodologies, section 6 provides an evaluation of the structure

of the methodologies and section 7 concludes the chapter.

6.2 Related work

In the computer science literature, there are isolated reports of physical penetra-

tion tests using social engineering [51, 11]. However, these approaches focus

completely on the actions of the penetration tester and do not consider the impact

of the test on the employees.

There are a few methodologies for penetration testing. The Open-Source Security

Testing Methodology Manual (OSSTMM) [113] provides an extensive list of what
needs to be checked during a physical penetration test. However, the methodol-

ogy does not state how the testing should be carried out. OSSTMM also does

not consider direct interaction between the penetration tester and the employees.

Barret [16] provides an audit-based methodology for social engineering using di-

rect interaction between the penetration tester and an employee. Since this is an

audit-based methodology, the goal is to test all employees. Our methodologies are

goal-based and focus on the security of a specific physical asset. Employees are

considered as an additional mechanism which can be circumvented to achieve a

goal, instead of being the goal. Türpe and Eichler [97] focus on safety precautions

while testing production systems. Since a test can harm the production system, it

can cause unforseeable damages to the organization. In our work the penetration

test of the premises of an organization can be seen as a test of a production system.

In the crime science community, Cornish [34] provides mechanisms how to struc-

ture the prosecution of a crime into universal crime scripts and reasons about

mechanisms how to prevent the crime. We adopt a similar reporting format to

present the results from a penetration test.

The Bellman report [47] defines the ethical guidelines for the protection of humans

in testing. The first guideline in the report states that all participants should be

treated with respect during the test. Finn [46] provides four justifications that

115

Chapter 6. Methodologies for Penetration Testing using Social Engineering

need to be satisfied to use deception in research. We use the same justifications to

show that our methodology is ethically sound.

6.3 Requirements

A penetration test should satisfy five requirements to be useful for the organiza-

tion. First, the penetration test needs to be realistic, since it simulates an attack

performed by a real adversary. Second, during the test all employees need to be

treated with respect [47]. The employees should not be stressed, feel uncomfort-

able nor be at risk during the penetration test, because they might get disappointed

with the organization, become disgruntled or even start legal action. Finally, the

penetration test should be repeatable, reliable and reportable [16]. We call these

the R* requirements:

Realistic - employees should act normally, as they would in everyday life.

Respectful - the test is done ethically, by respecting the employees and the mutual

trust between employees.

Reliable - the penetration test does not cause productivity loss of employees.

Repeatable - the same test can be performed several times and if the environment

does not change, the results should be the same.

Reportable - all actions during the test should be logged and the outcome of the

test should be in a form that permits a meaningful and actionable documentation

of findings and recommendations.

These are conflicting requirements. For example:

1. In a realistic penetration test, it might be necessary to deceive an employee,

which is not respectful.

2. In a realistic test, arbitrary employees might be social engineered to achieve

the goal, which is unreliable.

3. In a reportable test, all actions of the penetration tester need to be logged,

which is unrealistic.

Orchestrating a penetration test is striking the best balance between the conflicting

requirements. If the balance is not achieved, the test might either not fully assess

the security of the organization or might harm the employees.

116

6.4. Environment-Focused Methodology

We propose two methodologies, Environment-Focused Methodology and Custodian-

Focused Methodology for conducting a penetration test using social engineering.

Both methodologies strike a different balance between the R* requirements, and

their usage is for different scenarios. Both methodologies assess the security of an

organization by testing how difficult it is to gain possession of a pre-defined asset.

The methodologies can be used to assess the security of the organization, by re-

vealing two types of security weaknesses: errors in enforcement of social, digital

and physical policies and an absence of a policy. In the first case, the tests should

focus on how well the employees follow the security policies of the organization

and how effective the existing physical and digital security mechanisms are. In

the second case, the primary goal of the tests is to find and exploit gaps in the ex-

isting policies rather than in their implementation. For example, a test can focus

on how well the credential sharing policy is enforced by employees or can focus

on exploiting the absence of a credential sharing policy to obtain the target asset.

In this chapter we present the two methodologies which reduce the impact of

these tests. The Environment-Focused (EF) Methodology, measures the security

of the environment where the asset is located. The methodology is suitable for

tests where the custodian (person who controls the asset) is not subject of social

engineering and is aware of the execution of the test. One example of such test is

evaluating the security of the assets residing in the office of the CEO, but not the

awareness of the CEO herself. The Custodian-Focused (CF) Methodology is more

general, and includes the asset owner in the scope of the test. In this methodology,

the owner is not aware of the test. The CF methodology is more realistic, but it is

less reliable and respectful to the employees.

6.4 Environment-Focused Methodology

First, we define the actors in the Environment-Focused methodology. Then, we

introduce all events that take place during the setup, execution and aftermath of

the penetration test. Finally, we validate the methodology by conducting three

penetration tests and present some insights from the experience.

6.4.1 Actors

The penetration test involves four different actors.

117

Chapter 6. Methodologies for Penetration Testing using Social Engineering

Figure 6.1: Actors in the EF methodology

Security officer - an employee responsible for the security of the organization. The

security officer orchestrates the penetration test.

Custodian - an employee in possession of the assets, sets up and monitors the

penetration test.

Penetration tester - an employee or a contractor trying to gain possession of the

asset without being caught.

Employee - person in the organization who has none of the roles above.

The actors and the relations between them are shown in Figure 6.1. The majority

of actors treat each other with respect. No respect relation between two actors

means either the actors do not interact during the penetration test (for example

between the tester and the custodian) or do not have a working relationship (be-

tween the penetration tester and the employee). In this methodology, the tester

deceives the employee during the penetration test, presented in the figure with a

dashed line.

6.4.2 Setup

Figure 6.2 provides the sequence of events that take place during the setup, execu-

tion and closure of the penetration test. During all three stages of the penetration

test, employees should behave normally (1 in Figure 6.2).

As in other penetration testing methodologies, before the start of the test, the

security officer sets the scope, the rules of engagement and the goal (2 in Figure

6.2). The goal is gaining physical possession of a marked asset. The scope of

the testing provides the penetration tester with a set of locations she is allowed

to enter, as well as business processes in the organization she can abuse, such

as processes for issuing a new password, or processes for adding/removing an

118

6.4. Environment-Focused Methodology

Figure 6.2: The sequence of events in the Environment-Focused Methodology.

Each box represents an event which happens in sequence or parallel with other

events. For example, event 3 happens after event 2 and in parallel with events 1

and 4.

employee. The rules of engagement restrict the penetration tester to the tools and

means she is allowed to use to reach the target. These rules, for example, define if

the tester is allowed to force doors, to break windows or to use social engineering.

The custodian first signs an informed consent form and then sets up the environ-

ment, by marking an asset in her possession and installing monitoring equipment.

The asset should not be critical for the daily tasks of the custodian or anyone else,

including the organization. Thus, when the penetration tester gains possession of

the asset, the productivity of the custodian using the asset and the process flow of

the company will not be affected. The custodian leaves the asset in her office or

an area without people (storage area, closet). If the custodian shares an office with

other employees, the monitoring equipment should be positioned in such a way

that it records only the asset and not the nearby employees. The custodian knows

when the test takes place, and has sufficient time to remove/obscure all sensitive

and private assets in her room and around the marked asset (3 in Figure 6.2).

Meanwhile, the penetration tester needs to sign the rules of engagement (4 in

Figure 6.2). The OSSTMM methodology [113] provides a comprehensive list of

rules of engagement.

119

Chapter 6. Methodologies for Penetration Testing using Social Engineering

6.4.3 Execution

The security officer should choose a trustworthy penetration tester and monitor

her actions during the execution stage.

When the penetration test starts, the tester first scouts the area and proposes a set

of attack scenarios (5 in Figure 6.2). The proposed attack scenarios need to be ap-

proved first by the custodian (6 in Figure 6.2) and then by the security officer (7 in

Figure 6.2). The custodian is directly involved in the test and can correctly judge

the effect of the scenario on her daily tasks and the tasks of her colleagues. The

security officer needs to approve the scenarios because she is aware of the general

security of the organization and can better predict the far-reaching consequences

of the actions of the tester.

If the custodian or the security officer disapprove an attack scenario, they need

to evaluate the scenario and estimate the success. The tester puts in the report

that the scenario was proposed, the reasons why the scenario was turned down

and the opinion of all three roles on the success of the scenario. In this way,

although the scenario is not executed, it is documented including the judgment on

the effectiveness of the attack by the security officer, the custodian and the tester.

After approval from the custodian and the security officer, the tester starts with the

execution of the attack scenarios (8 in Figure 6.2). The custodian and the security

officer remotely monitor the execution (9 in Figure 6.2) through CCTV and the

monitoring equipment installed by the custodian.

The penetration tester needs to install wearable monitoring equipment to log her

actions. The logs serve three purposes. First, they ensure that if an employee is

treated with disrespect there is objective evidence. Second, the logs prove that the

penetration tester has followed the attack scenarios, and finally, the logs provide

information how the mechanisms were circumvented, helping the organization

repeat the scenario if needed.

6.4.4 Closure

After the end of the test, the penetration tester prepares a report containing a list of

attack traces. Each attack trace contains information of successful or unsuccessful

attacks (10 in Figure 6.2). Based on the report, the security officer debriefs both

the custodians and any deceived employees during the test (11 in Figure 6.2).

Reporting. The attack traces are structured in a report that emphasizes the weak

and the strong security mechanisms encountered during the penetration test, struc-

120

6.4. Environment-Focused Methodology

Generic
Script

Attack trace Circumvented
mechanisms

Recommendations

Prepare for the at-

tack

Buy a bolt cutter and hide it in a

bag. Scout the building and the of-

fice during working hours.

Obtain an after working hours ac-

cess card.

Access control of the

building entrances during

working hours.

Credential sharing policy.

Keep entrance doors to the

building locked at all time.

Provide an awareness

training concerning

credential sharing.

Enter the building Enter the building at 7:30 AM, be-

fore working hours.

Hide the face from CCTV at the en-

trance using a hat.

CCTV pre-theft surveil-

lance.

Increase the awareness of

the security guards during

non-working hours.

Enter the office Wait for the cleaning lady. Pretend

you are an employee who forgot the

office key and ask the cleaning lady

to open the office for you.

Challenge unknown peo-

ple to provide ID.

Credential sharing policy.

Reward employees for dis-

covering intruders.

Identify and get

the asset

Search for the specific laptop. Get

the bolt cutter from the bag and cut

the Kensington lock. Put the laptop

and the bolt cutter in the bag.

Kensington lock. Get stronger Kensington

locks. Use alternative

mechanism for protecting

the laptop.

Leave the build-

ing with the lap-

top

Leave the building at 8:00, when

external doors automatically unlock

for employees.

CCTV surveillance.

Access control of the

building entrances during

working hours.

The motion detection of

the CCTV cameras needs

to be more sensitive .

Figure 6.3: Reporting a successful attempt. The figure shows an example of a

generic script instantiated with an attack trace. First we define the generic script,

which encompasses the stages of all attacks. In the example, they are: enter the

building, enter the office, identify and get the asset, and exit the building. For each

step in a trace, we identify both the mechanisms (if any) that were circumvented

and mechanisms that stopped an attack. For failed attacks, the table shows which

mechanisms were circumvented up to the failed action, and the mechanism that

successfully stopped the attempt.

tured following 25 techniques for situational crime prevention [35]. For different

domains there are extensive lists of security mechanisms to enforce the 25 tech-

niques (for example, [61]). The combination of the attack traces together with the

situational crime prevention techniques gives an overview of the circumvented

mechanisms [105] (Figure 6.3)

Debriefing the employees and the custodian. After finding they were deceived by

the same organization they work for, the employees might get disappointed or dis-

gruntled. At the end of the test the security officer fully debriefs the custodian and

the employees. The debriefing should be done carefully, to maintain or restore the

trust between custodian and the employees who helped the tester to gain the asset.

121

Chapter 6. Methodologies for Penetration Testing using Social Engineering

Figure 6.4: Recording from the orchestrated tests using the EF methodology. The

student provided to the janitor a fake email stating he needs to collect a laptop

from the custodian office. The janitor let the student into the office and helped

him find the key from the Kensington lock.

6.4.5 Case study

To test the usability of the physical penetration tests using social engineering on

the employees, we executed a series of penetration tests following the EF method-

ology. These pilots allowed us to gain a clear, first-hand picture of each execution

stage of the methodology, and draw observations from the experience. The tests

are presented in detail in Chapter 7.

6.4.6 Lessons learned from the penetration tests

The observations are result of our experience with the penetration tests using

qualitative social research and might not generalize to other social environments.

However, the observations provide an insight of the issues that arose while using

the methodology in practice.

The attack scenarios should be flexible. Although the testers provided scenarios

prior to all attacks, in all cases they were forced to deviate from them, because

the target employee was either not present or was not behaving as expected. At-

tack scenarios assure the custodian and the security officer that the actions of the

122

6.5. Custodian-Focused Methodology

penetration tester are in the scope of the test, but at the same time there should be

some freedom in adapting the script to the circumstances.

The methodology does not respect the trust relationship between the custodian and
the employees. After the penetration test, the custodian knows which employees

were deceived, and the trust relationship between them is disturbed. For example,

if the secretary lets the penetration tester into the office of the custodian, the cus-

todian might not be able to trust her again. Therefore, after some penetration tests

the security officer might decide not do debrief the custodian completely.

During the penetration test, separating the custodian from the employees is hard.
Whenever the testers approached a colleague from the office, the first reaction of

the colleague was to call the custodian and ask for guidance. This led to uncom-

fortable situations where the custodians were forced to shut down their telephones

and ignore e-mails while outside the office. These situations can be reduced if the

testers inform the custodians the exact time they will carry out an attempt. Thus,

the custodians can be unavailable only for short periods.

Debriefing proved to be difficult. After the test, we fully disclosed the test to all

involved employees. During the debriefing we focused on the benefits of the pen-

etration test to the university and their help setting up the test. In three of the

executed penetration tests a security guard opened the office door for the penetra-

tion testers. After the debriefing, we concluded that we caused more stress to the

guard during the debriefing than the testers had caused during the penetration test.

We addressed this issue in the second methodology, by selectively informing the

involved employees.

6.5 Custodian-Focused Methodology

In the EF methodology, the custodian is aware of the penetration test. The knowl-

edge of the penetration test may change her normal behavior and thus influences

the results of the test. Since the asset belongs to the custodian, and the asset is

in the office of the custodian, in many environments it is desirable to include the

custodian’s resistance to social engineering as part of the test.

After performing the first series of penetration tests, we revisited and expanded

the Environment-Focused Methodology. The CF methodology can be seen as a

refinement of the EF methodology, based on the experience from the first set of

penetration tests. In the CF methodology the custodian is not aware of the test,

making the methodology suitable for penetration tests where the goal is to check

123

Chapter 6. Methodologies for Penetration Testing using Social Engineering

Figure 6.5: The sequence of events in the Custodian-Focused methodology

the overall security of an area including the level of security awareness of the

custodian.

6.5.1 Actors

There are six actors in the CF methodology.

Security officer - an employee responsible for the security of the organization.

Coordinator - an employee or contractor responsible for the experiment and the

behavior of the penetration tester. The coordinator orchestrates the whole pene-

tration test.

Penetration tester - an employee or contractor who attempts to gain possession of

the asset without being caught.

Contact person - an employee who provides logistic support in the organization

and a person to be contacted in case of an emergency.

Custodian - an employee at whose office the asset resides. The custodian should

not be aware of the penetration test (1 in Figure 6.5).

Employee - person in the organization who has none of the roles above. The

employee should not be aware of the penetration test (2 in Figure 6.5).

124

6.5. Custodian-Focused Methodology

Figure 6.6: Actors in the CF methodology

Figure 6.6 shows the actors and the relations between them. In this methodology,

the penetration tester deceives the employees as well as the custodian. Moreover,

the contact person also needs to deceive the custodian. These relations are dis-

cussed in greater depth in section 6.6.

6.5.2 Setup

At the beginning, similar to the EF methodology, the security officer initializes

the test by defining the target, scope and the rules of engagement. The security

officer at this point assigns a coordinator for the penetration test and provides

the coordinator with marked assets and equipment for monitoring the assets (3 in

Figure 6.5). The marked assets should be similar to the asset of interest for which

the security is measured. The monitoring equipment should be non-intrusive and

its purpose is to have additional information on the activities of the penetration

tester.

The penetration tester should sign the rules of engagement (Appendix A) before

the start of the execution stage (4 in Figure 6.5). The coordinator selects a number

of contact people and provides them with the marked assets and the monitoring

equipment (5 in Figure 6.5). Furthermore, the coordinator provides a cover story

which explains why the custodian is given the asset. The contact person selects a

number of custodians based on the requirements from the security officer (random,

specific roles, specific characteristics) and distributes the marked assets and the

monitoring equipment to the custodians. After giving the monitoring equipment,

the contact person should get a signed informed consent (Appendix B) from the

125

Chapter 6. Methodologies for Penetration Testing using Social Engineering

custodians (6 in Figure 6.5). If the asset can store data, the document must clearly

state that the custodian should not store any sensitive nor private data in the asset.

Before the penetration test starts, the coordinator distributes a list of penetration

testers to the security officer, and a list of asset locations to the penetration tester

(7 in Figure 6.5).

6.5.3 Execution

The first steps of the execution stage are similar to the previous methodology. The

penetration tester scouts the area and proposes attack scenarios (8 in Figure 6.5).

The coordinator and later the security officer should agree with these scenarios

before the tester starts executing them (9 and 10 in Figure 6.5). After approval

from both actors, the tester starts executing the attack scenarios. If a penetration

tester is caught or a termination condition is reached, the penetration tester imme-

diately informs the contact person. Thus, if the custodian stored sensitive data in

the asset, the data is not exposed.

When the tester gains possession of the target asset, she informs the contact per-

son and the coordinator and returns the asset to the contact person (11 in Figure

6.5). The contact person collects the monitoring equipment and informs the secu-

rity officer (12 in Figure 6.5). If the tester gains possession of the asset without

the knowledge of the custodian, the contact person needs to reach the custodian

before the custodian reaches the office and explain to the custodian that the test

is terminated. The tester should also leave a note stating that the asset has been

taken as part of a test together with contact details from the coordinator and the

security officer (for example, Appendix F). The security officer obtains surveil-

lance videos from the CCTV and access logs and gives them to the coordinator

(13 in Figure 6.5).

6.5.4 Closure

After the execution stage, the penetration tester writes a report of all attempts, both

failed and successful, in the form of attack traces and gives them to the coordinator

(14 in Figure 6.5). The coordinator has two tasks. First, she collects the marked

assets and monitoring equipment from the contact person (15 in Figure 6.5) and

returns them to the security officer. Second, the coordinator debriefs the security

officer and the custodians and provides the custodian a form of reward for helping

in the assessment (16 in Figure 6.5).

126

6.5. Custodian-Focused Methodology

Not all employees that were social engineered should be debriefed. Employees

who were treated with respect and to whom the penetration tester did not cause

discomfort during the interaction should not be debriefed, because the debriefing

can cause more stress than the interaction with the penetration tester. The decision

which employees need to be debriefed lies with the security officer, and is based

on the logs from the penetration tester and the monitoring equipment. The criteria

on which employees need to be debriefed are presented in greater detail in Section

6.6.

All custodians should be debriefed, because they sign an informed consent at the

beginning of the test. However, to preserve the trust between the custodian and

the employees, the custodian should not know which employee contributed to the

attack.

Three elements should be considered before the debriefing. First, the custodians

were deceived by the organization they work for (more specifically, by the contact

person). Second, in case of direct interaction, their privacy might be violated by

the logging equipment from the tester. Third, they might be stressed from the

penetration test either directly, through interaction with the penetration tester, or

indirectly, by finding their asset is gone before the contact person reaches them.

The debriefing should focus on the contribution of the custodian in finding the

security vulnerabilities in the organization, and the custodian should be rewarded

for the participation.

6.5.5 Case study

Similarly as with the EF Methodology, we orchestrated a number of penetration

tests to obtain first hand insight of the possible consequences of using this method-

ology as well as mechanisms to improve the methodology. We orchestrated 29

penetration tests with the Custodian-Focused Methodology in a period of 2 years.

Part of the tests were performed in University of Twente and part in the Technical

University of Eindhoven. The penetration tests are described in greater detail in

Chapter 7.

6.5.6 Lessons learned from the penetration tests

It should be specified in advance which information the penetration tester is al-
lowed to use. For example, the penetration tester should not use knowledge about

the cover story used by the contact person. During the case study, six penetration

127

Chapter 6. Methodologies for Penetration Testing using Social Engineering

Figure 6.7: Recording from a penetration test orchestrated using the CF methodol-

ogy. The student went to the office early in the morning, disguised as an employee

who forgot his key. The cleaning lady let the student in. The student used a bolt

cutter to remove the Kensington lock.

testers used knowledge of the cover story to convince the custodian to hand in the

laptop. Thus, these tests were less realistic.

Panic situations need to be taken into consideration in the termination conditions.
Several times the custodian or an employee got suspicious and raised an alarm.

Since only the security officer knew about the experiment, and the other security

personnel was excluded, news of people stealing laptops spread in a matter of

hours. In these situations the coordinator should react quickly and explain to the

employees that the suspicious activity is a test.

The penetration test cannot be repeated many times with the same persons. If

a custodian participated in the penetration test once, she knows what will hap-

pen. The same holds for the employees she told about the experiments and the

employees that were socially engineered.

Asking the custodians to install the monitoring equipment proved to be hard The

custodians either did not have the technical skills to install the software on their

PC, had no administrator rights on the PC, or had a laptop instead of PC, which

they took home after working hours.

128

6.6. Evaluation

6.6 Evaluation

In this section we compare both methodologies against the R* requirements. The

satisfaction of the requirements is defined by the rules of engagement, which at-

tack scenarios are approved for execution, and the structure of the methodologies.

Less restrictive rules of engagement and approving more invasive attack scenarios

make the penetration test more realistic, but make the test less reliable and re-

spectful to the employees. The evaluation below assumes these two elements are

tuned to the risk appetite of the organization and focuses only on the structure of

the methodologies.

Reliable: In the EF methodology, the penetration tester gains possession of a

non-critical asset which the custodian is prepared to lose. Thus, the result of the

penetration test will not affect the productivity of the custodian. In the CF method-

ology, the productivity of the custodian may be affected, since the custodian does

not know the asset will be stolen. The informed consent is a mechanism to avoid

productivity loss, since it explicitly states not to use the marked asset for daily

tasks nor store sensitive information on the asset. In both methodologies, the pro-

ductivity of other employees is not affected, since the penetration tester does not

gain possession of any of their belongings without their approval.

Repeatable: The repeatability of any penetration test using social engineering is

questionable, since human behavior is unpredictable. Checking if a penetration

test is repeatable would require a larger set of tests on a single participant, and a

larger number of participants in the test.

An additional issue of repeating a penetration tests by social engineering the same

employees is the experience the employees obtain from the tests. An employee

that has been social engineered may be much harder to social engineer twice.

However, this is a desired outcome of the tests.

Reportable: The approach used in reporting the results of the penetration test com-

pletely covers all information needed to perform the attack in a real-life situation

and provides an overview of what should be improved to thwart such attempts.

The logs from the tester and the monitoring equipment installed by the custodians

provide detailed information on all actions taken by the penetration tester, giving

a clear overview of how the mechanisms are circumvented.

Respectful: Both methodologies should respect all the employees and the trust

relationships between them.

In physical penetration testing, the social engineering element is more intense

than in digital penetration testing because the interaction between the penetra-

129

Chapter 6. Methodologies for Penetration Testing using Social Engineering

EF methodology CF methodology

Reliable +++ ++

Repeatable - -

Reportable +++ +++

Respectful: actors ++ +

Respectful: trust relations - ++

Realistic + +++

Figure 6.8: Evaluation of both methodologies

tion tester and the employee is direct, without using any digital medium. Baum-

rind [18] considers deception of subjects in testing as unethical. The National

Commission for the Protection of Human Subjects of Biomedical and Behavioral

Research, also clearly states this in their first rule of ethical principles: ”Respect

for persons” [47].

However, some tests cannot be executed without deception. Finn [46] defines

four justifications that need to be met do make deception acceptable: (1) The

assessment cannot be performed without the use of deception. (2) The knowl-

edge obtained from the assessment has important value. (3) The test involves no

more than minimal risk and does not violate the rights and the welfare of the in-

dividual. Minimal risk is defined as: ”the probability and magnitude of physical

or psychological harm that is normally encountered in the daily lives” [71]. (4)

Where appropriate, the subjects are provided with relevant information about the

assessment after participating in the test. Physical penetration testing using social

engineering can never be completely respectful because it is based on deception.

However, the deception in both methodologies presented in this chapter is justifi-

able.

The first two justifications are general for penetration testing and its benefits, and

have been discussed earlier in the literature (for example, Barrett [16]). The third

justification states that the risk induced by the test should be no greater than the

risks we face in daily lives. In the EF methodology, the only actor at risk is the

employee. The penetration tester cannot physically harm the employee because

of the rules of engagement, thus only psychological harm is possible. If the em-

ployees help the penetration tester voluntarily, the risk of psychological harm is

minimal. The logging equipment assures the interaction can be audited in a case

of dispute. In the CF methodology, an additional actor at risk is the custodian.

The only case when the risk is above minimal for the custodian is if the tester

gains possession of the asset without custodian’s knowledge. When the custodian

finds the asset missing and does not read the letter left by the testers, her stress

130

6.6. Evaluation

level might increase. Therefore it is crucial for the contact person to reach the

custodian before custodian learns about the theft.

The fourth justification states that all actors should be debriefed after the exercise.

In both methodologies, all actors except the employees are either fully aware of

the exercise, or have signed an informed consent and are debriefed after the exer-

cise. Similarly to Finn and Jakobsson [45], we argue that there should be selective

debriefing of the employees. Debriefing can make the employee upset and dis-

gruntled and is the only event where the risk is higher then minimal. Thus, an

employee should be debriefed only if the security officer constitutes the tester did

more than minimal harm.

Besides being respectful toward all the participants, the methodology needs to

maintain the trust relations between the employees. The EF methodology affects

the trust between the custodian and the employees and the employees and the

organization. This is a consequence of the decision to fully debrief all partici-

pants in the test. The CF methodology looks at reducing these impacts. First, the

custodians are not told who contributed to the attack. Only the coordinator and

the security officer have this information, and they are not related to the custo-

dian. Second, the employees are not informed about the penetration test unless it

deemed necessary. However, the trust between the custodian and the contact per-

son is shaken. Therefore, the contact person and the custodian should not know

each other prior to the test.

In conclusion, the CF methodology is less respectful to the custodian than the

EF methodology, because the custodian is deceived and might get stressed when

she finds out the asset is gone. The EF methodology does not preserve any trust

between the employees, the organization and the custodian. The CF methodology

preserves the trust bond between the custodian and the employees and between the

employees and the organization. However, the trust bond between the custodian

and the contact person may be affected.

Realistic: The EF methodology allows testing the resilience to social engineering

of employees in the organization. Since the custodian knows about the penetra-

tion test, she is not directly involved during the execution of the test, making this

methodology implementable in limited number of situations. In the CF method-

ology, neither the custodian nor any of the other employees know about the pene-

tration test, making the test realistic.

One might argue that if the asset is not critical for the employee, the tests are not

realistic. On the other hand, taking away ”real” assets in the penetration tests will

clearly cause loss of production. In the EF methodology, this issue does not exist,

as the employees who may be social-engineered are not aware of the importance

131

Chapter 6. Methodologies for Penetration Testing using Social Engineering

of the target asset. Therefore, they have no reason to behave differently toward

the experimental asset than to a ”real” asset. However, in the CF methodology,

the value of the asset as perceived by the custodian might influence the result of

the tests, as the employee may be more likely to give the asset away if she knows

it is not critical. As future work, we plan to investigate the effect of the perceived

importance of the asset on the results of such tests.

6.7 Conclusion

Securing an organization requires penetration testing on the IT security, the physi-

cal security of the location where the IT systems are situated, as well as evaluating

the security awareness of the employees who work with these systems. We pre-

sented two methodologies for penetration testing using social engineering. The

Custodian-Focused methodology improves on the Environment-Focused Method-

ology in many aspects. However, the Environment-Focused Methodology is more

reliable, does not deceive the custodian and fully debriefs all actors in the test. We

provide criteria to help organizations decide which methodology is more appropri-

ate for their environment. We evaluated both methodologies through analysis of

their structure against a set of requirements and through qualitative research meth-

ods by performing a number of penetration tests ourselves. This chapter shows

that physical penetration tests using social engineering can reduce the impact on

employees in the organization, and provide meaningful and useful information on

the security posture of the organization.

132

Chapter 7

Laptop Theft: ∗
An Assessment of the Effectiveness of Security
Mechanisms in Open Organizations

Organizations rely on physical, digital and social mechanisms to pro-

tect their IT systems. Of all IT systems, laptops are probably the

most troublesome to protect, since they are easy to remove and con-

ceal. When the thief has physical possession of the laptop, it is also

difficult to protect the data inside. In this study, we look at the ef-

fectiveness of the security mechanisms against laptop theft in two

universities. The study considers the physical and social protection

of the laptops. We analyze the logs from laptop thefts and comple-

ment them with qualitative and quantitative analysis on the results of

the orchestrated penetration tests performed using the methodologies

described in Chapter 6. The results from the study show that the effec-

tiveness of security mechanisms from the physical domain is limited,

and it depends mostly from the social domain. The study serves as a

motivation to investigate further the analysis of the alignment of the

mechanisms across all three security domains to protect the IT assets

in an organization.

∗This chapter is a major revision of the paper ”Effectiveness of Physical, Social and Digital

Mechanisms against Laptop Theft in Open Organizations” [1] published in Proceedings of the

2010 IEEE/ACM International Conference on Green Computing and Communications & Interna-

tional Conference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM ’10), pages

727-732, IEEE, 2010

133

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

7.1 Introduction

Of all IT systems, laptops are particularly hard to protect. Laptops are mobile,

easily concealable, there is a big market to sell the hardware and there can be

many of them in a single building. With the increased data storage capabilities

of laptops, the loss of even a single laptop can induce dramatical costs to the

organization [82]. Thus, although there can be a large number of laptops in an

organization, losing even a single laptop may not be acceptable.

Organizations open to the public are particularly at risk from laptop theft. Hospi-

tals and universities, for example, accept hundreds of people that can wander in

the premises every day. Marshall et al. [65] points out that 46% of data breaches

occur in institutions open to the public: education, health care and the government.

Laptops containing sensitive medical or academic data become highly vulnerable

in these environments.

The problem security professionals face is how to protect the laptops in such open

organizations. There are three types of security mechanisms to secure laptops in

a building: digital, physical and social mechanisms. Digital mechanisms such

as laptop tracking and remote data deletion protect the laptop and the data in

the laptop by using software. Physical mechanisms, such as doors and cameras,

physically isolate the thief from the laptop and/or identify her in case of a theft.

Social mechanisms such as organizational policies and rules decrease the number

of mistakes by employees and increase the resilience of employees toward social

engineering. Using digital mechanisms to protect laptops is elaborately researched

by the computer science community [123, 121, 58, 89]. However, linking these

mechanisms with physical and social mechanisms in protecting laptops is still not

explored.

This chapter evaluates the existing physical and social security mechanisms for

protecting laptops based on (1) logs of laptop thefts which occurred in a period of

two years in two universities in Netherlands, and (2) 32 penetration tests (within

which we had 31 successful attacks and 31 attacks that failed) in the same uni-

versities using the methodologies described in the previous chapter. The goal of

the penetration tests was to gain possession of a marked laptop from an employee

unaware of the penetration test. The results from the log analysis and the pen-

etration tests show that the security of an asset in an open organization depends

mainly on the level of security awareness of the employees, and to a lesser ex-

tent on the technical or physical security mechanisms. The physical and technical

mechanisms have a passive, deterrent role on reducing theft, while the employees

have an active, preventive role.

134

7.2. Literature overview

The outline of the rest of the chapter is as follows. In Section 7.2 we provide

a literature overview on laptop theft. In Section 7.3 we describe the methodol-

ogy we used in obtaining and analyzing the logs of the laptop thefts and describe

how the penetration tests were prepared and executed. In Section 7.4 we analyze

the logs and the results from the penetration tests qualitatively and provide gen-

eral observations that can be used as a guideline for which mechanisms should be

considered first in adding security mechanisms. In Section 7.5 we provide a quan-

titative analysis of the results from the penetration tests, and produce a logistic

regression model that provides the likelihood of a success of a theft. Section 7.6

summarizes the chapter and reiterates the main conclusions.

7.2 Literature overview

There are two areas of research that focus on protecting laptops: computer science

and crime science.

In the computer science community, there has been a considerable effort to model

the complex security relations between the digital, physical and social domain.

Scott et al. [91, 92] provides a holistic security model of the world by using spa-

tial relationship between the elements in the ambient calculus [23]. Dragovic et

al. [40, 41] presents a model which uses the physical property of objects and the

sensitivity of the data inside the objects to identify possible threats. In Chapter 3,

we also provided a formal model for representing and analysis of policy misalign-

ment between the three domains. These models provide sound policy design but

do not ensure effectiveness of security mechanisms that enforce these policies.

There are multiple mechanisms in computer science that work either in the phys-

ical or digital domain. In the digital domain, several security products, such as

TrueCrypt1 and BitLocker2 provide encryption for the whole hard drive. These

solutions assume the adversary does not have physical control of the laptop, be-

cause if the adversary has physical possession of the laptop, she can always suc-

cessfully execute a number of attacks [114, 24, 98]. These approaches also seem

to ignore the human element, or more precisely, induce performance overhead and

decrease the usability of the laptop. A recent study by Panemon [81] shows that

the majority of non-IT individuals, even when provided with an encrypted laptop,

turn off the encryption software.

A number of tracking applications, such as Adeona [89] and LoJack [121], can

1www.truecrypt.org
2www.tinyurl.com/microsoft-bitlocker

135

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

track the location of the laptop they are installed on. In case of theft, these solu-

tions use the Internet to provide the owner with the current location of the laptop.

These solutions suffer from two problems: (1) if the goal of the theft is obtain-

ing data from the laptop, the thief might never connect the laptop to Internet and

(2) if the goal is to obtain the hardware, the thief can easily remove the tracking

application by flashing the BIOS and/or formatting the hard drive.

In the computer science community, the accent is on protecting the data residing

in the laptop and finding the location of the stolen laptop. The approach from

the crime science community is more general, and considers the laptop and its

environment. The goal in this field is to prevent a thief from stealing the laptop in

the first place, by either changing the environment surrounding the laptop or by

creating situations that will deter a thief [35]. Kitteringham [61] provides a list of

117 strategies how to prevent laptop theft. The strategies include the implemen-

tation of physical, digital and social mechanisms. Although the list is elaborate,

all suggested mechanisms focus only on a single domain and do not consider any

interaction between the mechanisms.

There are several other studies that analyze laptop theft. These reports focus on

the money loss from a stolen laptop [82] and the frequency of laptop theft and

the most affected sectors [65]. Our results are complementary, and look at the

effectiveness of conventional physical and social security mechanisms in stopping

laptop theft.

7.3 Methodology

Assessing the effectiveness of a security mechanism can be achieved by auditing

and penetration testing. We apply both methodologies to investigate the most

commonly used security systems in the physical and social domain.

First, we look at logs of recent laptop thefts in two universities in Netherlands.

From the logs we obtain information about: the last control that failed before the

laptop theft, alarms raised by the theft and the role of physical mechanisms in

securing the laptop and finding the thief, such as access control and surveillance

cameras. The logs provide valuable information on the approaches thieves use to

steal a laptop. However, the logs provide limited information about the level of

security awareness of the employees. In particular, the logs do not provide any

information on the possible violation of social security mechanisms, such as let-

ting strangers inside an office and sharing credentials between employees. Even in

case of a burglary, the logs did not provide any information how the thief reached

136

7.3. Methodology

Locked Open Restricted Public No Total

office office location location details

(burglary)

Stolen laptops 18 11 2 27 1 59

Cut locks 1 5 0 1 0 7

Other damage 16 0 0 0 0 16

Figure 7.1: Information from the logs. The logs from both universities are merged

to anonymize the data.

the burgled office. Therefore, to better understand the effect of the security mech-

anisms, we orchestrated 32 penetration tests where we used social engineering to

steal a laptop. The penetration tests were executed using the methodologies pre-

sented in Chapter 6. Through the tests, we observed the security awareness of the

employees as well as the efficiency of the physical security mechanisms in both

universities.

7.3.1 Log analysis

In a period of two years, the two universities suffered from 59 laptop thefts (Figure

7.1). The logs from the thefts provide (1) the location from where the laptop

was stolen, (2) protection mechanisms on the laptop, and (3) how the theft was

discovered.

7.3.1.1 Results from the log analysis

Location of the theft: In 30% of the thefts, the thief broke into a locked office

either by forcing the door or breaking a window. This number indicates failure

of the physical security mechanisms in both campuses. In 46% of the thefts, the

laptop was stolen when the employee left it unattended in a public location, such

as a cafeteria or meeting room. These thefts indicate the level of security aware-

ness of the employees. In 19% of the cases, the theft occurred when the employee

left the office for a short period of time without locking the door. These results

show a combined failure of the physical and social mechanisms. The low security

awareness let the users leave the laptops unattended in a restricted area, and the

physical security mechanisms did not protect the laptops from being stolen.

Protection mechanisms on the laptop: In five of the thefts that occurred in an

unlocked office, the laptop was locked with Kensington lock. Only one of the

137

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

Figure 7.2: In majority of the cases, the theft occurred because the employee either

left the laptop in a public location or forgot to lock the office door.

laptops stolen in a public location was locked with a Kensington lock.

Theft discovery: The majority of the thefts (93%) were reported by the laptop

owner. In a few cases the report came from an employee who observed a bro-

ken door or window (5%). Only one of the thefts triggered an alarm. In this

case, the thief grabbed the laptop while the employee went to collect print outs

and left through the fire door, triggering the fire alarm. In all buildings, in both

universities, there are surveillance cameras (CCTV) and either partially or fully

centralized access control systems able to log access requests. Surprisingly, the

systems provided no useful information in any of the thefts. These mechanisms

are further analyzed in section 7.4.

Limitation of the logs: The logs provide information obtained after the theft took

place, based on evidence found by the police and the security guards. The logs

provide information only of successful theft attacks, but do not show when the

security controls have succeeded in stopping the thief. Moreover, the logs do

not provide information on how the thief reached the location nor on whether the

security awareness of the employees contributed to the theft.

Researchers and organizations recognize that the employees are the weakest link

in the organization [16, 15, 107]. Since the logs from the laptop thefts were in-

sufficient to provide us with this information, we orchestrated a set of penetration

tests where we used social engineering as a means to obtain a laptop. These tests

provided us with an opportunity to validate the methodologies we introduced in

the previous Chapter 6.

138

7.3. Methodology

7.3.2 The penetration tests

To obtain more detailed information on the effectiveness of the commonly used

security mechanisms in laptop theft protection, we orchestrated 3 penetration tests

using the Environment-Focused Methodology and 29 penetration tests using the

Custodian-Focused Methodology.

To avoid bias in the execution of the tests, we did not perform the tests ourselves,

but enlisted the help from 72 master students in computer security who took the

role of penetration testers. Before performing the tests we informed and received

permission for the penetration tests from the chief security officers in both uni-

versities. We informed the officers exactly which locations we were going to test

and the names of the staff and students involved. No other security person in the

universities knew of the tests. The tests were approved by the legal department

from the universities.

The students were divided in teams of three. The goal of each team was to steal a

clearly marked laptop from an employee who was unaware of the penetration test.

First, we did a pilot study with only three teams and three laptops. Based on the

results and insights of the pilot study, we performed an additional 29 penetration

tests the next two year.

As a methodology for the penetration tests, we used the Environment-Focused

Methodology for the pilot study and for the rest of the penetration tests we used the

Custodian Focused-Methodology from Chapter 6. The rest of the section defines

(1) the roles in a penetration test, (2) the setup, (3) the execution and (4) the

closure phase in the test, and discusses (5) the results and (6) the limitations of the

tests.

7.3.2.1 Roles in the penetration test

We defined five roles in the penetration tests.

1 Coordinator - researchers from the Distributed and Embedded Security Group

(DIES). The coordinators orchestrated the penetration tests.

2 Penetration tester - a student who attempts to gain possession of the asset

without being caught.

3 Contact person - an employee who volunteers to distribute the asset to the

custodians. In part of the penetration tests, this role was taken by colleagues

of the researchers, and by the DIES researchers themselves.

139

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

4 Custodian - an employee at whose office the laptop was placed.

5 Employee - all other employees in the university who had none of the roles

above.

7.3.2.2 Setup of the environment

The setup between the penetration tests following the EF and the CF Methodology

varied.

In the penetration tests that followed the EF methodology, the coordinator was also

the custodian, because the tests were not focused on the behavior of the custodian.

We locked the laptops with Kensington locks and hid the keys in the office desk of

the custodian. To monitor the laptops, we installed motion detection web cameras

which streamed live feeds to an Internet server. Since the custodian shared the

office with four other colleagues, the cameras were positioned in such a way to

preserve the privacy of the colleagues. We told the colleagues we are doing an

experiment, but we did not reveal the nature nor the goal of the experiment.

Since we knew about the penetration test, we did not allow the students to gain

possession of the laptops in our presence. During the experiment, we carried

on the normal work, thus the students were forced to carry on the attacks after

working hours or during the lunch break.

In the penetration tests that followed the CF methodology there was a distinction

between the coordinators and the custodians. In 11 of the tests we selected 4

PhD students as contact persons, who chose 11 friends as custodians (snowball

sampling [49]) from University of Twente and Technical University of Eindhoven.

In the other 18 tests, we selected a single contact person who randomly selected

the custodians from a list of all researchers in University of Twente.

After selecting the contact people and the custodians, we marked 29 laptops as

assets to be stolen. The contact persons asked the custodians to sign an informed

consent form, and then distributed the clearly marked laptops, each with a web-

camera and a Kensington lock. The custodians resided in two different universities

in nine different buildings. To steal any of the laptops, the penetration testers

needed to circumvent at least three layers of access control: the entrance of the

building, the entrance of the office where the custodian works and the Kensington

lock.

We gave the laptops to the custodians for two weeks usage. To avoid bias in the

study, none of the custodians was aware of the real purpose of the study. Instead,

we informed the custodians that the universities were conducting a usability study

140

7.3. Methodology

on the new laptops, and thus they needed to measure the satisfaction level of the

laptop users. We informed the custodians that the level of satisfaction would be

measured using motion detection web-cameras that would record the usage of the

laptops. The contact persons explained that they cannot tell the custodians exactly

which behavior we measure, since it might change the results of the experiment.

For security reasons, the contact people instructed the custodians to lock the lap-

tops with a Kensington lock and to keep them in the office. To reduce the risk of

data leakage and loss of productivity, the contact people asked the custodians not

to store any private or work data on the laptops. With these measures, we tried to

reduce the risk of data leakage and loss of productivity caused by any theft.

7.3.2.3 Execution of the penetration tests

After setting up the environment, we gave each of the penetration teams the lo-

cation of a single laptop they should obtain. In the first part, each team scouted

their location and collected as much information as possible about the custodian

and the security mechanisms at the location. Then, each team proposed a list of

attack scenarios they wanted to conduct. A sample attack scenario is presented in

Figure 7.4. During the second part of the test, after getting approval for executing

the scenarios by the coordinator, the teams started testing.

The actions of the teams were logged using the web-cameras we positioned in

the offices of the custodians and through recording devices carried by the teams

during the attacks. We used such comprehensive recordings (1) to have a better

overview of why the attacks succeeded/failed and (2) to be sure the employees

were treated with respect by the penetration testers. The students were asked to

try to avoid the CCTV cameras, to reflect the behavior of a real thief.

After each successful or failed attack, the teams provided an attack trace listing

which mechanisms they circumvented and, in case of failed attacks, which mech-

anism caused the attack to fail. Figure 7.6 provides a summary of the successful

approaches of teams and the disguises they used to obtain the laptop.

7.3.2.4 Closure

After all penetration tests were over, we debriefed the custodians and the contact

people through a group presentation, where we explained the penetration test and

its goal. All custodians and contact people were thanked and rewarded for helping

in the assessment of the security in their university.

141

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

Figure 7.3: In twenty of the tests the custodians willingly gave the laptop or as-

sisted in giving the laptop, either believing that the teams were from the help desk

or that they were sent by the coordinator.

1. Social engineer night pass from an employee.

2. Enter the building early in the morning.

3. Social engineer the cleaning lady to access the office.

4. Cut any protection on the laptop using a bolt cutter.

5. Leave the building during office hours.

Figure 7.4: Example of an attack scenario

7.3.2.5 Results from the penetration tests

Surprisingly, all teams but one were eventually successful in stealing their lap-

top. Besides the 31 successful attacks, there were an additional 31 unsuccessful

attacks.

The students took roles as service desk employees, students that urgently needed

a laptop for a few hours, coordinator representatives or relied only on physical

means to obtain the laptop. The students used mobile phones and pocket video

cameras to record the conversation with the employees. In one case they took a

professional camera and a cameraman, and told the custodian the recording is part

of a study to measure the service quality of the service desk.

The favorite approach of the teams was to confront the custodian directly and ask

for the laptop. The resistance of the custodians varied. In most cases, the custo-

dians gave the laptop easily after being showed a fake email and being promised

142

7.3. Methodology

Figure 7.5: In nine tests the teams social engineered a person other than the custo-

dian. In nine of the tests the students used a bolt cutter to cut the Kensington lock

or used other means to circumvent the lock.

Approach Disguise

Social engineered the custodian as coordinator helpers 5

as ICT desk 14

as students 2

Social engineered another employee as ICT desk 3

as delivery person 1

Social engineered the janitor as students 5

Social engineered the cleaning lady as PhD student 1

Used no social engineering 2

Figure 7.6: Successful approaches and disguises of the penetration testing teams

they will get the laptop back in a few hours. In some cases the custodian wanted

a confirmation from a supervisor or the coordinator. The teams succeeded in

these attempts because the custodian called a number provided by the penetration

testers. Needless to say, the number was of another team member pretending to be

the coordinator. In one case a colleague of the custodian got suspicious and sent

an email to the campus security. Since only the main security officer knew about

the penetration test, in few hours the security guards were all alerted and started

searching for suspicious students.

Some groups were not able to social engineer the custodian directly and were

forced to look for alternative approaches. For example, in one of the cases the

students entered the building before working hours. At this time the cleaning lady

cleans the offices, and under the assumption it is their office let the students inside.

After entering the office, the students cut the Kensington lock and left the build-

ing before the custodian arrived. A summary of all successful and unsuccessful

attacks is presented in Appendix G.

143

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

7.3.2.6 Limitations of the tests

A limitation of the tests might be the high self-confidence of the testers. The

security guards were not aware of the penetration test. If caught, the identification

process would be unpleasant experience for the testers. Nevertheless, they knew

they will not go to jail for their actions. A thief might rather wait for the laptop

to be left unattended than approaching an employee directly and asking for their

laptop.

7.4 Qualitative analysis

We observed three main security mechanisms in the universities: surveillance

cameras, access control and the level of security awareness of the employees.

7.4.1 Surveillance cameras

Security officers do not use cameras as alarming mechanisms, but use recorded

footages a posteriori, to identify an offender after an accident has taken place. The

security officers cannot afford to monitor all surveillance cameras. The cameras

work only when a motion is detected, and automatically store the recording in a

back end server. The delay between the occurrence and report of the theft gives

the thief sufficient time to leave the building.

Even when used to identify the thief a posteriori, the cameras provide limited

information about the thief. In none of the logs nor during any of the penetra-

tion tests the cameras provided enough information to reveal the identity of the

thief. The CCTV system is providing limited help because (1) the cameras are

not mounted in offices, (2) the thief can easily conceal the laptop and (3) thieves

usually know the position of the cameras and obscure their face.

The cameras are not mounted in offices. All penetration tests and 49% of the

thefts took place in an office. Cameras are not mounted in offices to preserve the

privacy of the employees and because mounting cameras in every office is not cost

effective. Without surveillance in these offices, it is impossible to identify a thief

during the act.

Instead of offices, the cameras are usually mounted on the entrance of buildings.

Many people pass through the entrances with bags, and each of the bags might

144

7.4. Qualitative analysis

conceal a stolen laptop. Even if there are only two persons observed by the cam-

era, if the persons are not caught on the spot and challenged by the security guards,

the evidence from the surveillance camera can not be used against them.

Cameras positioned to monitor public locations, such as cafeterias, halls and re-

ception desks can record the thief during the theft. The logs show that 46% of the

laptop thefts happened in public locations. During the penetration tests we noticed

that these cameras are usually triggered by motion detection, and are not actively

monitored by the security guards. A careful thief would obscure her face from

the cameras using a hat, a hood or just covering her face with her hands before

she steals the laptop. In one of the penetration tests, three penetration testers wan-

dered with newspapers on top of their faces through the building without being

challenged by anybody.

In conclusion, the surveillance system provides no help in stopping the theft and

has limited usage in identifying the thief a posteriori.

7.4.2 Access control

We spotted two weaknesses of the access control in the universities. Locks are

usually bypassed because (1) they are disabled during working hours and (2) the

doors and windows where the locks reside are easy to force.

The access controls on the entrances of the building are easily bypassed because

they are disabled during working hours and because there are too many people

with credentials that can open the door. From the 32 penetration teams, the major-

ity bypassed the entrance locks by attacking during working hours and only a few

teams social engineered credentials from an employee to enter the building out of

working hours.

Another attack vector for stealing a laptop is to force a door or a window. The

penetration teams were not allowed to damage any property of the universities

except cutting the Kensington locks. However, the logs from actual laptop thefts

show that in 30% of the thefts, the thief broke a door or a window to get access to

the office.

Similarly to recordings from surveillance cameras, logs from the access control

systems provide limited help in identifying the thief. The logs show whose cre-

dential was used to enter a restricted area at a specific time period. Since the

credentials are easy to steal or social engineer and because there are many people

entering and leaving the area where the theft occurs, it is hard to deduce which

person is the thief.

145

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

In conclusion, the typical access control mechanisms deployed in the universi-

ties are mainly used to deter opportunistic thieves, but provide no help against a

determined thief.

7.4.3 Security awareness of the employees

The level of security awareness of the employees plays a crucial role in success or

failure of a theft. The human element is the main reason behind the success of the

laptop thefts. In 69% of the laptop thefts and 100% of the penetration tests, the

theft occurred either because the employee left the laptop unattended in a public

location or did not lock the door when leaving the office. Similarly, during the

penetration tests, employees opened door from offices of their colleagues, shared

credentials or handed in laptops without any identification. Therefore, even with

strong access control in place, if the security awareness of the employees is low,

the access control can easily be circumvented.

On the other hand, the human element is the main reason behind the failure of

67% of all failed penetration tests. In these cases, an employee informed the

security guards for suspicious activities, rejected to open a door for the tester,

rejected to unlock a laptop without permission from the custodian or interrupted

the tester during the theft. In these cases, the employees besides enforcing the

access control mechanisms, also played a role as an additional surveillance layer

around the laptop.

Employees are usually considered as the weakest link in the security of an orga-

nization. We observe that employees can also be the strongest link in the security

of open organization. A proper security education of employees increases the em-

ployee’s resistance to social engineering, and increases effectiveness of the other

security mechanisms.

7.4.4 Limitations of the observations

The observations from the test and log analysis is based on the security mecha-

nisms in two open institutions. The observations may apply to other mobile assets,

such as medical equipment, beamers and mobile phones in institutions open to the

public. However, other types of organizations might have different spectrum of

mechanisms for protecting their laptops.

146

7.5. Quantitative analysis

M
a
n
a
g
e
rLaptop

Theft

H
a
n
d
le
r

O
ff
e
n
d
e
r

Target

P
la
ce

Manager

Tools

Guardian

Tools

Guardian

Handler

Tools

Offender

Tools

Target

Tools

Figure 7.7: Representation of the concepts from routine activity theory

7.5 Quantitative analysis

In this section we develop a statistical model that predicts the probability that a

theft will succeed based on the presence of guardians, managers and attack tools.

To achieve the goal, first we use Routine Activity Theory to define a number

of variables that describe the attack traces from the penetration tests. Then, we

calculate the correlation of the variables with the success of an attack scenario.

Finally, we use the variables that are statistically significant in a multivariate lo-

gistic regression, to construct a model that will predict the probability of an attack

succeeding based on the values of the variables.

The results from the analysis (1) can aid to better allocate protection mechanisms

in organizations and (2) can help generate/differentiate attack scenarios likely to

succeed during a penetration test.

We use Routine Activity Theory (RAT) [44] as a framework to analyze the results

from the penetration tests. For an attack to succeed, routine activity theory states

that three elements need to converge in space and time: a motivated offender,

a suitable target and the absence of a capable guardian. Capable guardians are

people that supervise people or property. When an offender and target exist, the

absence of a capable guardians allows the crime to occur. Besides the guardians,

there are two other groups of people that may prevent a crime, handlers and man-

agers [43]. A handler, such as a police officer, monitors likely offenders, while

a manager, such as a security guard, monitors amenable places. The concepts of

routine activity theory are presented in Figure 7.7.

147

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

Figure 7.8: Successful and unsuccessful attacks. The figure includes the variables

that contribute to the success of the attack, as well as reasons why an attack failed.

The majority of the attacks failed while the testers where trying to circumvent the

entrance to the office of the custodian (14) and the Kensington lock (16). In all but

one attack the testers managed to enter the building and in all attacks the testers

managed to leave the building.

During the penetration tests, we chose the offender (the penetration testers) and

the target (the laptop), and focused on the capable guardian (the custodian) and the

managers. Managers are the people whose presence in the location might prevent

the theft, such as the security guards, cleaning ladies, janitors, secretaries, and

employees in the office where the laptop is situated. The managers and guardians

have tools that help them thwart the likely offenders, such as (1) the entrance to

the building, (2) the entrance to the office, (3) the Kensington lock and (4) the exit

from the building with the target. Similarly, the offenders have tools to help them

steal the laptop, including physical theft and social engineering

7.5.1 Selection of the variables

Our dataset used in the analysis consists of 62 attacks distilled from the attack

traces generated by the 32 penetration tests, from which 31 are successful and

31 not successful. Figure 7.8 provides a summary of how the testers managed to

circumvent each layer of defense, as well as why some attacks failed.

We defined 30 variables that belong to one of the elements of interest in the routine

148

7.5. Quantitative analysis

Variable Description Encoding

Yes No

SocialEng An individual is social engineered 1 0

PhysTheft A physical theft took place 1 0

SomeoneInside The testers entered an unlocked, non-empty office 1 0

CustodianUnl The custodian unlocks the Kensington lock 1 0

ICTEmployee The testers took the role of an ICT Help Desk employee 1 0

Custodian The testers approached the custodian during the attack 1 0

Employee The testers approached another employee during the attack 1 0

Figure 7.9: Independent variables

activity theory. We divided the variables in three groups: (1) how the four layers

of defense were circumvented, (2) which managers were circumvented and (3)

which tools the testers used during the attack.

From the attack traces we defined 19 variables that belong to the first group. These

variables together with the frequency of occurrence are presented in the successful

attacks in Figure 7.8. For the second group, the managers, we used 4 variables that

specify the roles of the people that were approached during the tests: custodian,

employee, janitor, cleaning lady. Finally, for the third group we used 2 variables

for the technique the testers used, social engineering and physical theft, as well as

5 variables based on the roles the testers took during the attack: ICT Help Desk,

PhD student, student, assistant to the coordinator or no role. The complete lest of

variables is presented in Appendix H.

7.5.2 Correlation between the variables

We used the SPSS statistic package to correlate the values of the variables with

the results of the attacks. Of the defined variables, 8 had a sufficient statistical

significance of the correlation with the success of the attack. Of these variables

7 were present at a sufficient number of successful attacks (10 or more) and were

included in the further analysis. The dependent variable in the analysis is whether

the attack succeeded or failed, while the independent variables which had suffi-

cient statistical significance are presented in Figure 7.9. A summarized result of

the analysis for these independent variables is presented in Figure 7.10.

The points of interest in Figure 7.10 are the ratio between successful and total

number of attack for a given value from one of the independent variables, and

the correlation between the independent and dependent variable. For example,

there are 31 attacks where the office was empty. From these attacks, only 11 suc-

ceeded (36%). There were another 31 attacks when someone was in the office,

149

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

Variable SomeoneInside CustodianUnl Custodian Employee

Value 0 1 0 1 0 1 0 1

Succeeded /

Number of attacks 11/31 20/31 12/43 19/19 10/34 21/28 27/47 4/15

In % 36% 65% 28% 100% 29% 75% 57% 27%

Poarson’s R 0.29 0.67 0.45 -0.26

Significance test 0.02 0.00 0.00 0.04

Variable ICTEmployee SocialEng PhysicalTheft

Value 0 1 0 1 0 1

Succeeded/

Number of attacks 16/41 15/21 1/15 30/47 23/52 8/10

In % 39% 71% 7% 64% 44% 80%

Poarson’s R 0.31 0.49 0.26

Significance test 0.02 0.00 0.04

Figure 7.10: Relation between the distilled variables and the success of an attack

from which 20 succeeded (65%). Thus the information for the variable Some-
oneInside can be interpreted as: When someone was inside the office (custodian
or employee), allowing the testers to get inside the office, 65% of the attacks suc-
ceeded. Only 36% of the attacks succeeded when the testers needed to find a
different way to circumvent the office door.

The next two row in Figure 7.10 present the strength and direction of the cor-

relation between the variable in question and the outcome of the result and its

significance. The significance provides the probability of obtaining the current

distribution of frequencies, or one that is more uneven. The direction of the corre-

lation between the variable SomeoneInside and the outcome of the attack is pos-

itive, and the strength of the correlation is 0.29. The significance of this result is

0.02 (<0.05), which leads to the conclusion that there is a chance of 2% to get

such or more uneven distribution of the frequencies randomly.

Interpretation of the results

The first two variables, SomeoneInside and CustodianUnl, show which ways of

circumventing the layers of defense (the managers) correlate the most with the re-

sults of the attacks. The circumvention of the entrance to the office is more likely

when there is someone inside, because then the entrance is unlocked. Similarly,

when the custodian unlocks the Kensington lock for the testers, the attack always

leads to a success. From these two instances we can conclude that the defined lay-

ers of defense are not very useful because they can be disabled by the custodians

and other employees that have access to the office where the target resides.

150

7.5. Quantitative analysis

The second pair of variables, Custodian and Employee, belong to the group of

variables describing the guardian and the managers that were approached during

the penetration tests. Approaching the custodian as part of the attack positively

correlates with the success of the attack. This is an expected result, because if the

custodian agrees (even indirectly, by phone or mail) to give the laptop to the tester,

the managers usually do not interfere with the execution of the attack. However,

there is a negative correlation with the Employee variable. When employees other

than the custodian are approached during an attack, they often refuse to give ac-

cess to the laptop, and in most times refer the tester to come back in the office

when the custodian is present. From these two instances we can conclude that the

managers are more likely to interfere with an attack, while the guardians are more

likely to give the device away.

The correlation of the last three variables in the analysis, ICTEmployee, SocialEng
and PhysicalTheft, describes the dependency between the roles and techniques

used by the testers, and the outcome of the attacks. When the testers took the role

of an employee from the ICT Help Desk, the managers and guardians were more

likely to give away the laptop rather than when the testers assumed a different

role or no role at all. From the techniques used, both when the testers used social

engineering as part of the test and when they used physical theft, the theft was

more likely to succeed.

7.5.3 The success likelihood of an attack

We use the selected 7 variables to build a regression model. The regression model

provides information on how the modification of the variables in an attack scenario

(adding or removing any of them) can change the probability of a success of the

attack. The probability of a success of an attack scenario depends on the influence

of each of the identified properties in the scenario and their cumulative influence:

Psuccess =
1

1+e−z

z = α + β0X0 + ...+ βnXn

where P represents the probability of success, and depends on the constant α, the

regression coefficients β1, , βn that are linked to the independent variables X1,,

Xn and the values of these variables.

To build the model we use the stepwise backward multivariate logistic regression

from the SPSS package. From the selected 7 variables, we discounted Custodi-
anUnl because it gave uninterpretable results. The analysis finished in 4 steps,

151

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

Variable B S.E. Wald df Sig. Exp(B)

Step 4 X0: SocialEng 5.0 1.5 11.8 1 .001 151.48

X1: PhysicalThefts 3.1 1.3 6.0 1 .014 23.14

X2: Employee -3.1 1.0 11.6 1 .001 0.05

C : Constant -3.8 1.4 7.2 1 .007 0.02

Figure 7.11: Variables in the equation. Variables entered on step 1: SocialEng,

PhysicalTheft, SomeoneInside, ICTEmployee, Custodian, Employee.

discounting one of the variables in each step. The summarized result is presented

in Figure 7.11.

The values for B represent the coefficients in the logistic regression equations.

Exp(B) is the exponentiated coefficient, yielding the odds ratio. S.E. represents

the standard error associated with each of the coefficients. As only a single in-

dependent variable is involved in each test the degrees of freedom (df) equals 1.

We used the Wald-test to confirm the validity of our model. In order for an inde-

pendent variable to be statistically relevant, the Wald value needs to be compared

to a Chi-squared distribution. This gives the significance, which is also presented

in the table. A variable is said to be significant when the significance is 0.05

or less [9]. In our case, as can be seen in Figure 7.11, we found that the three

independent variables SocialEng, PhysicalTheft, Employee and the constant are

significant. Thus, we can predict the chance of success for a given attack sce-

nario based on knowledge of whether the social engineering and theft is used and

whether employees are involved using the function Psuccess:

Psuccess(X0, X1, X2) =
1

1+e−(−3.8+5.0X0+3.1X1−3.1X2)

Interpretation of the results

From the results we can deduce that the use of social engineering appears to have

the biggest influence on the model’s outcome (increasing the predicted probabil-

ity). Involvement of physical theft increases this probability even more. However,

when managers are involved, the probability of the success of the attack decreases.

In case none of the independent variables are true, the predicted probability will

be only based on the constant coefficient.

We can evaluate this model by comparing the observed outcome with the result

predicted by the model as depicted in Figure 7.12. The result shows that overall,

83.9% of the cases would be correctly predicted by the model. The probability of

obtaining a false positive (22.6%) from the model seems to be slightly higher than

the probability of a false negative (9.7%).

152

7.6. Conclusion

Step 4 Observed Predicted

Result Percentage correct

0 1

The outcome of the attack 0 24 7 77.4%

1 3 28 90.3%

Overall percentage 83.9%

Figure 7.12: Classification table

Limitation of the results

Our dataset has 62 attacks. When using logistic regression, problematic results

are known to occur if there are not enough events compared to the number of

independent variables [32]. There are three different types of problems or er-

rors: underfitting, overfitting and paradoxical fitting. These are respectively when

important variables are omitted, when too many variables are used or when a vari-

able actually suggests a factor to have a certain impact when in fact the opposite

is true. To keep the model valid, these errors must at least be kept to a minimum,

in order to do this it is suggested to use at least ten events per independent vari-

able [33, 78, 79]. An event is the smaller number of the binary outcome of the

logistic model. In our case an event is the successful theft of a target laptop, and

the number of successful and unsuccessful attacks is the same, 31. In our model,

we have 3 independent variables, which meets the minimum of 10 events per vari-

able. To make stronger claims on the results we need to increase the dataset, which

can be achieved with the execution of additional penetration tests.

7.6 Conclusion

In this chapter we evaluated the security mechanisms from the physical and so-

cial domain that influence laptop theft in organizations open to the public. We

analyzed the logs of laptop thefts which occurred in a period of two years in two

universities in Netherlands. We complemented the findings from these logs with

32 penetration tests using the methodologies in Chapter 6, in which we used social

engineering to gain possession of marked laptops.

We observed that (1) mechanisms from a single domain can provide only limited

protection against laptop and (2) the effectiveness of a physical security mecha-

nism depends mainly on its alignment with security mechanisms from the social

domain. From the quantitative analysis of the results from the penetration tests,

we obtain two conclusions. First, in the crime prevention domain, we conclude

153

Chapter 7. Laptop Theft: An Assessment of Security Mechanisms

that people managers have the biggest contribution in stopping a theft. Second,

in the penetration testing domain, using social engineering as a tool provides the

biggest probability of successful acquisition of the laptop.

154

Chapter 8

Training Students to Steal∗
A Practical Assignment in Computer Security
Education

Practical courses in information security provide students with first-

hand knowledge of technical security mechanisms and their weak-

nesses. However, teaching students only the technical side of infor-

mation security leads to a generation of students that emphasize digi-

tal solutions, but ignore the physical and the social aspects of security.

In the last two years we devised a course where students were given a

practical assignment which includes a combination of physical secu-

rity, social engineering and digital penetration testing. As part of the

course, the students took the role of penetration testes, and using the

methodologies presented in Chapter 6 obtained laptops from unaware

employees throughout the university campus. The assignment pro-

vided the students with a practical overview of security and increased

their awareness of the strengths and weaknesses of security mecha-

nisms. The penetration tests executed by the students helped us draw

conclusions on the effectiveness of security mechanisms presented in

Chapter 7. In this chapter we present the design of the practical as-

signment and the observations from the execution.

∗This chapter is a minor revision of the paper ”Training Students to Steal: A Practical Assign-

ment in Computer Security Education” [3] published In Proceedings of the 42nd ACM technical

symposium on Computer science education (SIGCSE ’11), pages 21-26, ACM, 2011

155

Chapter 8. Training Students to Steal: A Practical Assignment

8.1 Introduction

Educational institutes are starting to offer specialized CSIA (Computer Security

and Information Assurance) courses, designed to train students in assessing and

improving the security of digital systems. Computer security focuses on the pro-

tection of data from theft and corruption by using a combination of physical, dig-

ital and social mechanisms. Physical mechanisms focus on restricting and detect-

ing physical access to the data, such as locks, CCTV, infrared sensors and heat

sensors. Digital mechanisms focus on digital detection and protection of the data.

Common digital mechanisms are firewalls, intrusion detection systems and en-

cryption. Finally, social mechanisms focus on increasing the security awareness

of the employees and reducing mistakes from human factors. Examples of social

mechanisms that improve security are lectures on social engineering and clearly

defined policies.

Graduate courses in computer security often provide a narrow view on security

and focus mostly on the digital aspects (Figure 8.1, dashed line). Such a focus

provides an unrealistic view of the security requirements of an organization and

leads to students assuming that digital means ensure secured data.

However, most of the attacks performed by insiders require no technical knowl-

edge [86]. In the literature there are numerous examples where an adversary uses

social engineering and physical access to obtain data [16, 69, 11]. Thus, it is im-

portant to get the students acquainted with attacks in which the hacker uses also

physical and social means to compromise the data (Figure 8.1, solid line).

Practical assignments clarify and support the theory students learn. In practical

assignments students use the same methods and tools that hackers with malicious

intent use to gain access to information. The usage of practical assignments in

computer security is performed as part of many computer security courses, such

as in forensics [37], in education on spam [95] and in social engineering [42]. We

believe that students need to understand the hacking mentality and see how an

adversary would attack also in the physical and the social domain of information

security. That can be done by giving students first hand experience of the effec-

tiveness of the physical and social security mechanisms, exploring which attack

vectors are more likely to succeed than others.

In this chapter we present the practical assignment of an introductory graduate

course in computer security. The goal of the course is to give a broad overview

of security to the students and to increase their interest in the field. As part of the

course, the students steal laptops from unaware employees, mount offline attacks

on the laptop and attack a vulnerable server using the data from the laptop.

156

8.2. Course description

Figure 8.1: Computer security in context

In section 8.2 we present the course and give a description of the practical assign-

ment as well as observations from the execution of the assignment. In section 8.3

we present in greater detail the practical and ethical implications of the physical

penetration test from the assignment. In section 8.5 we summarize our experience.

8.2 Course description

Since 2008 we have taught a class on introduction to computer security to graduate

students. The duration of the course is eight weeks, in which the students need

to write a scientific paper and take part in a practical assignment which can be

either suggested by them or by the lecturer. The course is part of a master track

in computer security, and introduces the students to all concepts in security. The

rest of the courses in the security track provides in-depth knowledge in different

aspects of information security. The goal of the introductory course is threefold:

1. Describe important concepts in computer security from the perspective of

physical, digital and social security.

2. Prepare the students to place security mechanisms in an overall security

context; for example, design a system or analyze a situation and determine

what the different physical, digital and social mechanisms could achieve in

157

Chapter 8. Training Students to Steal: A Practical Assignment

1. Gain possession

of laptop

2. Decrypt a file

from the laptop

3.Use the data from the

file to attack servers

Figure 8.2: The steps in the practical assignment

a given scenario or what techniques could be applied to reach a given goal.

3. Provide students with a first-hand experience with the strengths and weak-

nesses of security mechanisms from the physical, digital and social domain.

As part of the class, we provide a practical assignment where the students take the

point of view of an adversary.

The practical assignment is divided in three exercises, (1) physical penetration

exercise using social engineering, (2) offline attacks on a laptop and (3) online

attacks on a vulnerable server (Figure 8.2).

8.2.1 Physical and social engineering attacks

The goal of the physical penetration exercise (1), is to make the students aware of

the social engineering and physical activities an attacker can use to get sensitive

data, by stealing a laptop. After this exercise the students should have knowledge

of social engineering and physical security, and know the threats that arise from

them. For the first part of the assignment we used the methodologies described in

Chapter 6.

In 2008 we performed a pilot study with 9 students divided in 3 groups. The

groups performed 3 penetration tests using the EF methodology. After positive

feedback and applying the lessons learned in the pilot study, we gave the practical

assignment to all students in the class of 2009, 11 groups of 3 students. In the sec-

ond year, the students performed the penetration tests using the CF methodology.

Each laptop the students obtained was protected with at least three layers of access

control: the entrance of the building, the entrance to the office of the employee and

a Kensington lock. After setting up the environment, we gave each of the teams

the location of a single laptop they should obtain. First, each team scouted their

location and collected as much information as possible about the employee and the

158

8.2. Course description

security mechanisms in place. Then, each team proposed a list of attack scenarios

they wanted to conduct. Each scenarios was approved by us and the security

management. The students had two weeks to gain possession of the laptop. The

actions of the teams were logged using the web-cameras we positioned in the

offices of the employees and through recording devices carried by the students,

such as mobile phones. We used such comprehensive recordings to be sure the

employees were treated with respect by the students. After each successful or

failed attempt, the teams provided an attack trace listing which mechanisms they

circumvented and, in case of failed attempts, which mechanism caused the attack

to fail.

8.2.2 Offline attacks

The second part of the practical assignment (2) consists of offline attack on en-

crypted data. The goal of the offline attacks, is to make the students aware of

the strength of the current encryption mechanisms, as well as the state of the art

hacking tools. After this exercise the students should have knowledge of most

commonly used tools for encryption of data and their vulnerabilities.

During the pilot study, on each of the laptops marked for stealing we put three

copies of a file containing the IP address of one vulnerable server. One copy

was encrypted with WinZip1, the other copy with TrueCrypt2 and the third with

BitLocker3.

During the actual assignment, to avoid privacy breach of the custodians, we in-

stalled the copies of the file on laptops provided by the students rather than on the

laptops marked for stealing.

In this part of the assignment, the students used offline attacks, such as the Cold-

boot attack [53] and/or password cracking tools such as John the Ripper4 and

Hydra5 to obtain the IP address from the encrypted file.

1www.winzip.com
2www.truecrypt.org
3bitlocker.
4www.openwall.com/john
5freeworld.thc.org/thc-hydra

159

Chapter 8. Training Students to Steal: A Practical Assignment

8.2.3 Online attacks

During the digital penetration testing exercise, the students need to use the IP

address obtained from the second part of the exercise as an attack vector in on-

line attack on a vulnerable server (3). The goal of the exercise was to give the

students an overview of the current online techniques in compromising a system.

After the exercise, the students should to be able to use the common tools used in

penetration testing, and know their capabilities.

As a target server, we used a number of virtual machines running Windows and

Linux operating systems. On each machine we set a web site in which we intro-

duced a vulnerability, either SQL injection or buffer overflow.

In the last exercise the students used Backtrack6 to attack the vulnerable server

and obtain a protected file.

In this chapter we focus only on the first exercise of the assignment, the physical

penetration test. The second and third exercise can be considered as a reproduction

of exercises reported by other authors [37, 68, 13].

8.3 Implications

Running the practical assignment is challenging. Most of the issues we faced we

discuss in Section 6.4.6 and Section 6.5.6 in Chapter 6.

During the design of the course, we had four major concerns. First, the execu-

tion of the assignment might violate the law. Second, the assignment is executed

in an environment where the outcome cannot be controlled. Thirdly, the assign-

ment teaches students to steal and lie. Finally, the assignment includes deceiving

employees. In the rest of this section we explore the implications.

8.3.1 Legal implications

To ensure that we were operating within the law, before deploying the assignment

we consulted the legal department of the university. Following the advice from

the legal department, we forbade all scenarios that included (1) theft of any object

besides the laptop, (2) searching through the belonging of the employees and (3)

impersonation of officials of the university, police, fire department, etc.

6www.backtrack-linux.org

160

8.3. Implications

8.3.2 Reducing unexpected outcomes

The assignment was executed on the campus of the university. This is a semi-

controlled environment, where we could neither fully control the behavior of the

students nor the behavior of the employees and the security personnel. We applied

the following principles to the design of the exercise:

1. Limit the scope of the activity. The students were not allowed to use in-

timidation, violence nor to put the employees or themselves at risk. They

were also forbidden to cause any physical damage, except for cutting the

Kensington locks. The laptops were clearly marked and the students were

allowed to gain possession only of a specific laptop. All students signed the

rules of engagement before the scouting phase.

2. Control the risk. All attack scenarios were approved in advance by us, and

only minor deviations in the execution were allowed. The web-cameras and

the students recorded with video/audio of all their activities. The recordings

allowed us to see if the employees were treated with respect or were put at

risk. Finally, all students were given a lecture on the ethical aspects of social

engineering and theft.

3. Reduce the impact of the exercise. Just after the execution of the task, the

students reported to us. When the laptops were stolen without knowledge

of the employees, we tried to inform the employees before they found the

laptop gone. The employees were briefed from the beginning not to store

any sensitive, private nor critical information on the laptops, and to use them

only for gaming and surfing. At the end of the assignment, we properly

debriefed all the employees, and provided small gifts for the participation.

4. Introduce escape clauses. The employees and the students participated vol-

untarily in the study. Both groups were aware, and signed an informed

consent stating they can stop with the activity at any time. All students

were given ”get out of jail” cards in case they are caught by the security

guards. The cards contained phone numbers of the security management

and the lecturers. The security management had information about all the

target employees and all the students who participated in the exercise.

8.3.3 Ethical implications for the students

During the design of the first part of the assignment, the physical penetration

tests, we were concerned (1) whether the students would feel comfortable with

the activity and (2) whether we were training a future generation of criminals.

161

Chapter 8. Training Students to Steal: A Practical Assignment

Benefits Risks

1. Practical overview of all

aspects of security.

1. Reduced comfort level.

2. Awareness of the strengths

and weaknesses of security

mechanisms.

2. Misuse of the knowledge.

Figure 8.3: Risks and benefits from the assignment to the students

8.3.3.1 Comfort level of the students

Before the start of the assignments, all the students were given the opportunity to

perform an experiment of their choice instead of participating in the assignment.

The only limitation was that the experiment should have the same workload as the

assignment. All the students decided to join the assignment.

Survey among the students

To evaluate their level of comfort we devised two questionnaires, one before the

exercise and one after the exercise. We had 31 respondents (94%) for each of

the questionnaires. The students graded on a scale of 1 (strongly disagree) to 5

(strongly agree) how much they agree with a statement.

The majority of students felt comfortable during the assignment. The number in-

creased from 65% before the execution of the exercise, to 77% after the exercise.

Most students thought the assignment would be fun, but the percentage dropped

from 71% to 65% after conducting it. At the beginning students felt less comfort-

able because they were not sure what kind of attacks they would perform. After

we approved only the low risk scenarios, the comfort level increased, but the fun

part of the activity decreased. 68% said they would repeat the assignment if they

were again given the chance. The results are summarized in Figure 8.4.

The students filled out another questionnaire after finishing the course, as part

of the standard quantitative evaluation of courses in the university. The results

show the satisfaction of the students increased as well as their attendance in class

compared to the previous year (Figure 8.5). The grade of the course increased

a whole point, from 6.8 in 2008 to 7.8 in 2009, thanks to the enthusiasm of the

students for the practical assignment. The average grade of the rest of the courses

were 7.2, both in 2008 and 2009.

162

8.3. Implications

Question Av. SD

Before the exercise:

The exercise will be fun 4.6 0.7

The exercise is useful 4.1 0.8

I feel fine about the exercise in general 3.8 1.1

I feel fine about the ethical implications of the

exercise

3.5 1.2

After the exercise

The exercise was fun 4.5 0.7

The exercise was useful 4.1 0.9

I feel fine about the exercise in general 4.1 1.0

I feel fine about the ethical implications of the

exercise

3.6 1.2

I would do the exercise again 3.9 1.2

I am now more aware of physical and social se-

curity

3.9 0.9

Figure 8.4: Results from the students before and after the first part of the assign-

ment

Year: 2008 2009

Respondents: 40 (100%) 28 (90%)

1. The course was well organized 7.4 8.6

2. My attendance was above 80% 7.3 8.9

3. I liked the practical assignment 5.6 8.2

4. Overall grade of the course 6.8 7.8

Figure 8.5: Results from the students after passing the course

8.3.3.2 Risks of teaching students to steal

Checking if we are teaching the next generation of criminals is a more subtle issue.

The benefit of educating students in the adversarial aspect of security is widely

discussed and implemented in many security courses. Pashel [76] and Logan and

Clarkson [64] discuss the ethical implications of teaching students to hack and the

possibility of misusing the acquired knowledge. We show that the arguments in

favor of teaching digital penetration testing also hold for the physical domain, by

establishing an analogy between digital and physical penetration testing.

Analogy to teaching digital penetration testing

163

Chapter 8. Training Students to Steal: A Practical Assignment

Question Average SD

1: Deceiving the subject 3.5 1.2

2.1: Physical damage - Discomfort 2.3 1.1

2.2: Physical damage - Injury 1.3 0.8

2.3: Physical damage - Death 1.0 0.0

3.1: Material damage - Emotional 2.4 1.2

3.2: Material damage - Financial 2.8 1.3

3.3: Material damage - Production loss 2.1 1.4

4.1: Psychological damage - Threats 2.1 1.0

4.2: Psychological damage - Deception 4.2 0.8

5.1: Privacy - Assume identity 4.0 1.0

5.2: Privacy - Access sensitive informa. 3.6 1.3

5.3: Privacy - Destroy information 2.3 1.1

5.4: Privacy - Theft of information 3.2 1.3

Figure 8.6: Ethical acceptability of damage according to students

According to Pashel [76] and Logan and Clarkson [64], teaching hacking to stu-

dents is mostly justified, because to provide the best security defense, a system

administrator must possess the same skills as the attacker. We consider this to be

the Locksmith Argument. For any locksmith to be able to create decent locks they

also need to have the ability to break locks (or at least have extensive knowledge

on the techniques of a lock picker). The same argument can be applied to teach-

ing physical penetration testing. The only way a student is able to secure physical

objects is to have extensive knowledge on how attackers penetrate organizations,

buildings and so forth. Letting them gain experience from an attacker’s point of

view will positively affect this knowledge.

Another argument in favor of teaching students digital penetration testing is that

these skills are useful in discovering weaknesses in the security of a system [64].

The same argument can be applied to physical penetration testing. For example,

an insurance company needs to review the physical security (such as cameras and

security guards) and digital security (the network infrastructure that controls the

cameras, the locks and the alarms) of a museum before determining the insurance

premium.

Survey among the students

In the questionnaires we gave to the students, we also asked for their opinion

on ethical issues. The students were told to assume there were no rules in the

assignment, the only objective was to obtain the laptop.

164

8.3. Implications

Benefits Risks

1. Increased awareness of the employees. 1. Employees are deceived.

2. Checks the security mechanisms in the

university.

2. Employees or their data might be

put at risk.

Figure 8.7: Risks and benefits from the assignment to the employees

We asked what type of damage the students are willing to inflict on the employee

or the surroundings: physical, material, psychological damage and invasion of

privacy. Each type of damage consists of some subtypes that contain examples

of such damage, varying from light to severe (in our perception). In this way, we

could identify the ethical sensitivity of types of damage, in the perception of the

students.

The results from this survey are shown in Figure 8.6. The scale is from 1 (uncom-

fortable / I will never do that) to 5 (comfortable / I have no problem doing that).

The questionere was filled out by 28 students (85%).

Physical damage is a sensitive matter. Even light physical damage or emotional

damage was rated only around 2. The roots for this rating can be found in the

basic ethics of society e.g. ”do not hurt people” and ”respect your fellow hu-

man beings”. The students are less concerned with material damage than physical

damage. Ratings are rather spread with this type of damage: some students do not

care about material damage at all while other students do feel very uncomfortable

causing material damage. It is surprising to see that the students feel uncomfort-

able with causing production loss.

Furthermore, threats and intimidation are again sensitive according to the stu-

dents: The rating averages around 2. Deception however does not seem to be such

a big problem, most students have no difficulty in feeling comfortable with de-

ceiving the employee. It is also surprising to see that privacy issues do not make

the students feel very uncomfortable. Destroying information does rate as very

uncomfortable, but other types of privacy issues tend to rate toward comfortable.

8.3.4 Ethical implications for the employees

We describe the ethical implications of the penetration tests to the employees in

Section 6.6 from Chapter 6. Physical penetration testing using social engineering

can never be completely respectful because it is based on deception. However, the

deception used in the assignment presented in this chapter is justifiable.

165

Chapter 8. Training Students to Steal: A Practical Assignment

Question Av. SD

1. I found the exercise interesting 4.2 0.8

2. The exercise increased my awareness 3.8 1.2

3. The exercise should be done more often 3.8 0.9

4. During the exercise I found myself stressed 1.9 1.1

5. I find the assignment ethical 3.6 1.0

6. These exercises are harmful 2.1 0.9

7. These exercises will benefit students 3.7 0.8

8. The security awareness of students and em-

ployees can be improved through such exer-

cises?

4.4 1.0

Figure 8.8: The view of the employees

Besides the 11 penetration tests we executed as part of the presented assignment,

we orchestrated additional 18 penetration tests in 2010. After the debriefing, we

asked the employees to fill in a survey. Twenty four employees (83%) from which

the students obtained the laptop filled a questionnaire after the debriefing.

They answered multiple questions, on a scale of 1 (I strongly disagree) to 5 (I

strongly agree) and yes/no questions. The results are summarized in Figure 8.8.

Most of the employees said that the university should continue letting graduate

students perform these assignments (71%) or did not have opinion on the topic

(29%), but none of the employees was for stopping the training. 94% of the

employees, also agreed that these kinds of assignments can improve the security

awareness, both that of the students and of the university employees.

8.4 Using Portunes to produce attack scenarios

In 2010 we ran the practical assignment again with two modification. First, the

students had to steal a laptop twice. Once using attack scenarios generated by

Portunes, and once using attack scenarios generated through brainstorming. Sec-

ond, because of the extra work for the students, we removed the online attacks on

vulnerable servers from the practical assignment.

The goal of these changes was to focus on the suitability of Portunes to generate

attack scenarios for penetration testers and to compare the quantity and quality of

the scenarios produced by Portunes with the attack scenarios the testers can come

up by traditional ways (brainstorming).

166

8.4. Using Portunes to produce attack scenarios

8.4.1 Setup of the practical assignment

In 2010 we had 9 teams of 3 students. The teams first got a target and scouted the

target for one week. Simultaneously they were reading on how to use the Portunes

tool to produce models and generate attack scenarios.

After the scouting phase, the teams met for 3 hours in a lab. Here the teams were

divided in two groups. The first group of 5 teams was supposed to brainstorm

as many attacks as possible for their target, while the second group of 4 teams

was supposed to generate a Portunes model and automatically produce the attack

scenarios.

After the 3 hour lab exercise, the teams had one day to write the results in a

general template so it is impossible to see whether the attack scenarios they are

produced by Portunes or brainstorming. We collected these reports and randomly

distributed them to the teams. Upon receiving a set of attack scenarios, the teams

had to grade them and then execute them.

During the second round of penetration tests, the setup was the same, but the

groups changed their roles. The group that generated the attack scenarios using

Portunes in the first round of penetration tests, generated them through brain-

storming, and vice versa, the group of teams that generated the scenarios through

brainstorming generated them using Portunes.

8.4.2 Unanticipated difficulties

During the execution of the exercise, we faced a few unanticipated difficulties,

which hindered us in drawing conclusions.

First, during the lab work it become apparent that most of the teams did not read

the instructions how to use Portunes. For example, the teams were downloading

the Portunes tool for the first time during the lab work, and did not know the

concepts of Portunes nor how to use the tool to start building a model. Without

this knowledge they could not produce any meaningful result within the allocated

3 hours. Thus 2 of the 4 teams that were supposed to generate attack scenarios

using Portunes were allowed to use brainstorming.

Second, we faced a few bugs in the Portunes GUI. For example, when generating

all the attack scenarios, the model gets modified. There was no button to revert

to the original Portunes model. This forced the teams to save the Portunes model

every time before they generated the attack scenarios. These bugs together with

167

Chapter 8. Training Students to Steal: A Practical Assignment

the time limitation of 3 hours, limited the size of the model the students could

generate.

Third, during the second round of generating attack scenarios, the teams that gen-

erated scenarios using brainstorming (7 out of the 9 teams), produced models such

that generate the same attack scenarios they produced using the brainstorming. We

did not have a clear policy on this before the start of the assignment. In addition,

the time between handing in the reports and the deadline for starting the execution

of the penetration tests was one day, leaving no time to repeat the lab work. Thus,

we accepted these scenarios as valid.

Finally, we had no clear policy how the quality of an attack scenario should be

graded. The positive or negative outcome of an attack depends from many vari-

ables which are not part of the attack scenario. Thus, we asked for subjective

grading from the students based on the likelihood of the scenarios to be success-

ful. We found this reasonable, because the students were the ones that will even-

tually execute the scenarios. However, each set of attack scenarios contained a

scenario where they mimic an ICT employee. In this scenario they state to the

custodian there is a virus in the laptop and they need to take the laptop for in-

spection. When executing the scenarios, the teams most often ignored the other

produced scenarios and executed the ICT Desk attack scenario (14 out of the 18

tests). Thus it is hard to determine how realistic were the other scenarios produced

both by Portunes and through brainstorming.

With the above mentioned limitations of the assignment, we could distill the fol-

lowing conclusions:

• Portunes can generate realistic, executable scenarios similar to the ones

generated by brainstorming. The students were able to generate the same

scenarios from the brainstorming using Portunes. The average number of

scripts is almost equal (13 for manual against 12 for Portunes). There was a

non-significant difference in the average grading with 1 point (6.5 for man-

ual against 5.5 for Portunes).

• Using Portunes, a penetration tester can generate a set of attack scenarios

within 3 hours. All scenarios the teams generated were within the allocated

slot of 3 hours.

168

8.5. Conclusion

8.5 Conclusion

To make students aware of physical and social aspects of security, these aspects

need to be included in security courses, both from a theoretical and a practical

point of view. We presented a practical assignment consisting of three steps. First,

the students needed to steal a laptop from an unaware employee, then decrypt a

document from the laptop, and finally use the information from the document to

attack vulnerable servers.

As part of the assignment the students used the Portunes framework to automati-

cally generate physical penetration tests to execute. However due to unanticipated

difficulties in the setup of the experiment, we were not able to draw conclusions

on the usability of Portunes in generating attack scenarios.

The students enjoyed the assignment and their awareness of the physical and so-

cial aspects of security increased. During the course they learned the strengths

and weaknesses of common physical, digital and social mechanisms used to se-

cure sensitive information. Such experience is essential for the future security

architects and chief security officers. Furthermore, the practical assignment in-

creased the overall attendance in the course and improved the course grade.

However, the assignment is challenging to administer and draws ethical and legal

implications. The students might feel uncomfortable to execute the attacks or the

employees might not be treated with respect. The students might also abuse the

new skills in illegal actions.

Surveys among students and employees indicate that the risks can be managed.

Employees who participated in the exercise did not feel stressed nor considered

the exercise harmful. Moreover, the arguments used in favor of digital penetration

testing also apply for physical penetration testing. Therefore, we believe the ben-

efits of the practical assignment outweigh the mentioned risks. This assignment

can be used by other universities in introducing computer security to graduate

students.

169

Chapter 8. Training Students to Steal: A Practical Assignment

170

Chapter 9

Conclusions

In the introductory chapter, we introduced the term alignment of orga-

nizational security policies. In the same chapter we introduced three

research questions that would improve the policy alignment and en-

forcement. In this chapter we summarize the contributions of this

thesis, in relation to the research questions and show how our con-

tributions can help solve practical problems in the industry. We also

highlight future research directions both related to the work intro-

duced in this thesis as well as the area of aligning security policies

across the physical, digital and social domain in general.

Historically, policy alignment is either observed from management perspective,

where managers align the security requirements with the business requirements,

or from technical perspective, where security professionals align policies in a spe-

cific software, computer or computer network. Recently, policy alignment is be-

ing seen more as a tool that allows the security professionals to refine security

requirements into technical security specification.

Policy alignment can be horizontal, when policies at the same level of abstraction

are aligned, or vertical, when more abstract policies are refined into low-level

policies on objects and data. During a horizontal alignment, the main goal is to

make the policies jointly exhaustive and mutually consistent, which means that

every behavior is either allowed or forbidden, and there is no behavior that is both

171

Chapter 9. Conclusions

allowed and forbidden. During a vertical alignment, the main goal is to ensure

that low-level policies are complete with respect to the high-level policies, which

means that every behavior that is allowed by the high-level policies is allowed by

the low-level policies, and that every behavior that is forbidden by the high-level

policies is also forbidden by the low level policies.

The main goal of policy alignment research is to provide enforcement of high-

level policies into security mechanisms, taking into consideration the physical,

digital and social aspects of security. To achieve this goal, this research domain

needs to provide (1) a consistent and exhaustive horizontal alignment of high-

level security policies, (2) complete vertical alignment between high-level and

low-level security policies and (3) complete enforcement of the low-level security

policies into security mechanisms.

The first focus in this thesis is on helping organizations to have complete verti-

cal alignment by providing formal methods for proving completeness of vertical

alignment, and is addressed in Chapter 2, 3, 4 and 5. We show how the results

from the first part of the thesis can be applied in mitigating the insider threat. In-

siders have intimate knowledge of the policies of the organization, and may use

them to their advantage to achieve a malicious goal. As a running example, we

used the road apple attack, where an insider deceives an employee to plug an in-

fected dongle into a server residing in a restricted area, enabling the transfer of

sensitive information to a remote server.

After the policies are horizontally and vertically aligned by the HR and IT and

physical security departments, they are enforced into security mechanisms. Se-

curity mechanisms cannot guarantee 100% enforcement of the policies because

of their nature (locks may break, people may reveal confidential information).

Therefore testing the security mechanisms by taking an adversarial role plays an

important role in assurance that the deployed mechanisms are sufficient and oper-

ational.

The second focus in this thesis is on helping organizations have complete enforce-

ment of the security policies by providing methodologies for testing and improv-

ing the effectiveness of security mechanisms in organizations, and is addressed in

Chapter 6, 7 and 8. We show how the results from the first part of the thesis can be

applied in mitigating the laptop theft threat. Laptops are mobile devices that are

easy to cloak and steal, and may contain whole databases of sensitive information.

A loss of a single laptop can cost an organization loss of productivity, restitution

cost to clients and loss of intellectual property. As a working example, we use

the scenario of stealing a laptop from an employee in a restricted area within the

premises of the organization.

172

9.1. Scientific contributions

9.1 Scientific contributions

In the introductory chapter we formulated the following research question:

Main research question: How can we align and enforce security poli-

cies spanning the physical, digital and social domain?

We refined the main research question into three research question that could help

in aligning and enforcing security policies spanning the physical, digital and so-

cial domain. Below we summarize the contributions of this thesis for each of the

research questions from practical and theoretical perspective.

Research question 1: How can we represent the policies from the three domains
in one formal framework?

• We specified the three domains in one formal framework, Portunes. The

framework is able to express: 1) physical properties of elements, 2) mobility

of objects and data, and 3) trust and delegation between people. The frame-

work is also able to represent low-level policies on objects, locations and

data, such as identity, credential and location based access control (Chap-

ter 3).

• We specified high-level policies formally. We defined a modal logic, de-

signed to specify a set of desired and undesired behaviors and states of Por-

tunes models. These behaviors and states are represented as properties of

Portunes models and can also be used to describe adversarial goals (Chap-

ter 5).

Research question 2: How can we efficiently discover all cross-domain threats
caused by policy misalignment?

• We provided a set of algorithms that from a Portunes model generate a be-

havior that is allowed by the low-level policies but forbidden by a high-level

policy (Chapter 4). The algorithms can be used to test the completeness of

the vertical alignment across the physical, digital and social domain.

Research question 3: How can we test and improve the enforcement of the low-
level policies?

173

Chapter 9. Conclusions

• We developed two methodologies for testing the enforcement of the low-

level policies through physical penetration tests (Chapter 6).

• We analyzed the logs from actual thefts and 32 penetration tests to deter-

mine the effectiveness of most commonly used security mechanisms in pro-

tecting against laptop theft (Chapter 7).

• We designed a practical assignment for graduate students in introducing the

basic concepts in information security using live penetration tests (Chap-

ter 8).

9.2 Practical contributions

Besides the scientific contribution, the results from the research can help address-

ing practical issues in the industry. In the introduction of this thesis we provided a

motivating example where the management faced two issues in their information

security program:

Problem 1: How can the management be sure that the total set of low-level poli-
cies produced by the physical, IT and HR departments matches their high-level
policy?

Problem 2: How can the three departments be sure that the security mechanisms
in place follow the design specifications of the low-level policies?

We approached the first issue using formal methods by providing a formal model

and a logic and were able to define low-level policies, high-level policies and

behaviors in a single formalism. From a practical perspective, we implemented

the algorithms and partially the logic in a single proof of concept tool, which

is freely available. Now the security departments can build a model that will

represent the environment of interest, input the current low-level and high-level

security policies and generate and simulate behaviors that are allowed by the low-

level policies but forbidden by the high-level policies. The tool can be used at

various cycles of development, for example, before system deployment to analyze

what-if scenarios and after high-level policy modification, to check whether the

low-level policies are still complete with respect to the high-level policies. These

contributions can help the management to obtain formal assurance that the low-

level policies defined by the physical, IT and HR departments are properly refined

from the high-level policies and are complete with respect to them.

174

9.3. Future work

We addressed the second issue from the motivating example by providing an ex-

tensive overview of methods used to protect assets in an organization from theft,

and testing methodologies to assure the security departments that the low-level

policies are properly implemented. The security departments can now run physi-

cal penetration tests using social engineering with methodologies that have been

scrutinized by the scientific research community and take into consideration the

ethical implications of the tests. The results we obtained from orchestration 32

penetration tests provide valuable first hand information on the advantages and

limitations of the proposed methodologies, as well as empirical information on

the effectiveness of the most commonly used security mechanisms in open orga-

nizations.

9.3 Future work

The results in this thesis open several possible research directions.

• The constructs used to describe the three security domains in Portunes are

carefully chosen with respect to their expressiveness and the complexity

they add in the automatic generation of the behaviors. One can envision

extending the Portunes framework with constructs such as negotiation be-

tween people, behavior templates (sequence of action templates that rep-

resent a generic behavior) or logging mechanisms, to increase the level of

detail at which behaviors can be presented.

• In this thesis we presented only one analysis of Portunes models: automatic

generation of behaviors. With small modifications, the Portunes framework

is suitable for other types of analysis:

Quantitative analysis. Using Portunes we can get a number of scenarios

that lead to the violation of a high-level policy. The number of scenarios can

be related to how well this policy is refined. For example, there is difference

whether 1000 behaviors violate the policy rather than only 2. However,

not all behaviors are equally likely. With addition of probabilities to the

model, by giving to each action the likelihood of occurrence, we can provide

quantitative analysis of Portunes models. Thus, the chance that someone

forgets to lock a door or would be susceptible to social engineering can be

encoded within the model and used for ranking the produced behaviors.

Logging. Portunes can describe only preventive security mechanisms,

such as firewalls, encryption, passwords and physical locks. By adding log-

ging constructs on the policies, the Portunes framework can be extended

175

Chapter 9. Conclusions

with detective security mechanisms, such as cameras, intrusion detection

sensors, guards, infrared sensors etc. The analysis can then be extended

to search for behaviors that are not detectable with the current positioning

of the detective security mechanisms, but still violate the high-level pol-

icy. Another usage of logging can be to provide a minimal set of low-level

policies that log the actions the guard, so no malicious behavior can occur

undetected.

• The penetration testing methodologies proposed in this thesis were used to

orchestrate 32 penetration tests. Throughout the execution of the tests we

identified two issues that we consider to require further research.

Perceived importance of the asset. During the penetration tests we no-

ticed that some of the employees might have guarded the provided laptops

much less than the laptops they work on. In other cases, the situation was

reversed. Because the employees were entrusted with a new laptop, they

seemed to guard these laptops much more than their own. It would be inter-

esting to see how the perceived importance of the asset affects the behavior

of the custodians. In an experiment, the custodians can be separated in two

groups. One of the groups can be informed that the laptop contains infor-

mation critical for the organization. Through another round of penetration

tests we could see the difference of behavior between the groups.

Safety as a requirement. The penetration tests are usually performed in

office buildings. However, when they need to be performed in potentially

hazardous environments, such as chemical, biological or nuclear laborato-

ries safety becomes an important requirement for the methodology. It is

interesting to investigate the aspect of safety of both the employees and the

testers and include it into the penetration testing methodologies.

• During the analysis of the effectiveness of security mechanisms we used the

logs from thefts from two universities and the results from the penetration

tests. A more general picture would be obtained if we complement these

results with logs from thefts from other institutions, as well as results of

penetration tests performed at different premises.

9.4 Application of the results to other research areas

The results of this thesis can assist in multiple areas of information security:

176

9.4. Application of the results to other research areas

Penetration testing. Until recently, the focus of penetration tests was finding vul-

nerabilities in computer networks. With the realization that the employees are the

weakest link in security, the number of penetration tests increases where social

engineering is used as a tool. The thesis provides a methodology the penetration

testers can use to execute penetration tests. The Portunes tool can assist in the

penetration test by providing the testers an automatically generated attack scenar-

ios.

Risk assessment. Risk assessment usually takes as input attack scenarios where

an asset or process is interrupted, stolen or exposed, and calculates the probability

of these scenarios happening and the impact on the organization if such scenario

occurs. The quality of the risk assessment depends directly on the quality and

quantity of the attack scenarios used in the analysis. The Portunes tool can help

presenting and generating these scenarios.

Security awareness training. Educating the future security professionals and the

employees is becoming a standardized process in universities and organizations.

The assignment provided in the thesis allows students to learn first-handedly the

weaknesses of the most commonly used security mechanisms. The Portunes tool

also provides step by step simulation of attack scenarios. These scenarios can be

used as part of educating employees during security awareness trainings.

177

Appendix A

Comparison of related models

In this appendix we analyze in greater detail the Ambient Calculus, the model

of Scott and the model of Dragovic. We analyze the models using the device

tampering, coldboot attack and the road apple attack, which were presented in

the case study in Chapter 2. Using the attacks from the case study, we point and

discuss the shortcoming of the presented models.

178

179

Ambient calculus

For the semantics of the ambient calculus refer to the original paper [23]. The
results below have been validated on the Basic Ambient Factory tool. Here we
show why the ambient calculus can not present tampering with a device, and an
approach to model the coldboot attack and the road apple attack.

Tampering:

1. Without any information about the tamper resistance of the device, we can
present the data leaving the device as.

device[data[out device]]

2. We can present the increased tamper resistance by using N layers of nested

ambients.

device[pLayer1…[pLayerN[data[out pLayerN… out pLayer1.out device]]]…]

The capability of the data leaving the device resides with the data, not with the
device. Through this presentation, for every change on the stack of layers, the
capability of the data needs to be changed dynamically.

A simple example is:

device[pLayer1[pLayer2 [data[out pLayer2.out pLayer1.out device]]]]

If pLayer1 is removed from the device (the adversary circumvents one layer of
defense or reduces the strength of the resistance of the device), the data ambient
will never be able to get out of the device because out pLayer1 capability will never
be executed.
(NO)

Coldboot attack:

To present the attack, we model 2 laptops, the data of interest, the RAM which is
being moved, and the destination hard drive. In steps (1) and (2), the ram moves
from laptop1 to laptop2. In steps (3) and (4) the data moves from the ram to the
hdd of laptop2. Every current action is presented in bold font.

laptop1[ram[out laptop1. in laptop2. data[out ram.in hdd]]] | laptop2[hdd[]]

laptop1[] | laptop2[hdd[]] | ram[in laptop2. data[out ram.in hdd]]
laptop1[] | laptop2[ram[data[out ram.in hdd]] | hdd[]]
laptop1[] | laptop2[ram[hdd[] | data[in hdd]]]
laptop1[] | laptop2[ram[hdd[data[]]]]

(1)
(2)
(3)
(4)
(5)

(YES)

180

Road apple 1:

adversary[in cafeteria.usb[out adversary. in employee. in laptop. rootkit[]] | out cafeteria] |
employee[in cafeteria | laptop[open usb] | out cafeteria] | cafeteria[]

Trace when the adversary succeeds in the attack:

adversary[in cafeteria.usb[out adversary. in employee. in laptop. rootkit[]] | out cafeteria]
| employee[in cafeteria | laptop[open usb] | out cafeteria] |cafeteria[]

 employee[in cafeteria | laptop[open usb] | out cafeteria]
 | cafeteria[adversary[usb[out adversary. in employee. in laptop. rootkit[]] | out cafeteria]]

 employee[in cafeteria | laptop[open usb] | out cafeteria]
 | cafeteria[adversary[out cafeteria] | usb[in employee. in laptop. rootkit[]]]

 employee[in cafeteria | laptop[open usb] | out cafeteria]
 | cafeteria[usb[in employee. in laptop. rootkit[]]] | adversary[]

 cafeteria[employee[laptop[open usb] | out cafeteria] | usb[in employee. in laptop. rootkit[]]] | adversary[]
 cafeteria[employee[usb[in laptop. rootkit[]] | laptop[open usb] | out cafeteria]] | adversary[]
 cafeteria[employee[laptop[open usb | usb[rootkit[]]] | out cafeteria]] | adversary[]
 cafeteria[employee[laptop[rootkit[]] | out cafeteria]] | adversary[]
 cafeteria[] | employee[laptop[rootkit[]]] |adversary[]

(1)

(2)

(3)

(4)

(5)
(6)
(7)
(8)
(9)

Besides being able to present the coldboot attack, the calculus is able to present
concurrent actions. In this scenario, there are two other trance which we just
mention. The first branch generating new trace can occur in (2), where the
adversary enters the cafeteria but does not leave the dongle (out cafeteria capability
in adversary executes before out adversary in usb). The second branching can occur in
(5), where the employee enters the cafeteria but does not pick up the dongle (out
cafeteria capability in employee executes before in employee in usb).
(YES)

Road apple 2:

In this scenario, the adversary sends a message to the employee to plug in the
dongle. After approval, the dongle goes from the adversary to the laptop of the
user and infects the laptop.

One trace is:

 (YES)

adversary[m1[out adversary.in employee] |open m2.usb[out adversary. in employee.in laptop.rootkit[]]]
| employee[open m1.m2[out employee.in adversary] | laptop[open usb]]

 adversary[open m2.usb[out adversary. in employee.in laptop.rootkit[]]]
 | employee[open m1.m2[out employee.in adversary]| laptop[open usb]] | m1[in employee]

 adversary[open m2.usb[out adversary. in employee.in laptop.rootkit[]]]
 | employee[m1[] | open m1.m2[out employee.in adversary] | laptop[open usb]]

 adversary[open m2.usb[out adversary. in employee.in laptop.rootkit[]]]
 | employee[m2[out employee.in adversary] | laptop[open usb]]

 adversary[open m2.usb[out adversary. in employee.in laptop.rootkit[]]]
 | employee[laptop[open usb]] | m2[in adversary]

 adversary[m2[] | open m2.usb[out adversary. in employee.in laptop.rootkit[]]]
 | employee[laptop[open usb]]

 adversary[usb[out adversary. in employee.in laptop.rootkit[]]]
 | employee[laptop[open usb]]

 adversary[] | employee[laptop[open usb]] | usb[in employee.in laptop.rootkit[]]
 adversary[] | employee[usb[in laptop.rootkit[]] | laptop[open usb]]
 adversary[] | employee[laptop[open usb | usb[rootkit[]]]]
 adversary[] | employee[laptop[rootkit[]]]

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)
(10)
(11)

181

Model of Scott

The model of Scott is capable of presenting the coldboot attack and the road apple
attack with indirect interaction between the adversary and the employee, but can
not present device tampering and the road apple attack with direct interaction
between the adversary and the employee.

Tampering:

Similarly to the ambient calculus, we can assume multiple layers of protection
over the data. But, the defined command over data (emit/receive) uses
“teleporting” approach and ignores the layers between the source path and
destination path. Because of the teleporting, any obstacles placed between the data
and the adversary can be ignored, and thus, no tamper resistance of a device can
be presented.
(NO)

Coldboot attack:

Initial:

room[laptop1[RAM[key[0]]] | laptop2[0]]

Transformations:

]2[]1[
21

2;1

laptoplaptop
laptoplaptop

laptoproomroomlaptop

RAM

RAM

RAMRAM

Result:
room[laptop1[0] | laptop2[RAM[key[0]]]]

The transformation above shows the RAM leaving laptop1 and going to laptop2,
through the room entity.

2;1 laptoproomroomlaptop RAMRAM

This derivation can be read as: the RAM moves from the position of laptop1 to the
position of laptop2. Here we point out the teleportation effect, where all entities in
between which might restrict the movement (in this case room) are ignored in the
formula.

]2[]1[laptoplaptop RAM
(YES)

182

Road apple 1:

Initial:

building[room1[adversary[dongle[donglecontext[rootkit[0]]]]] | cafeteria[0] |
room2[employee[laptop[laptopcontext[appcontext[0]]]]]]

Transformations:

][][

;

][][

;

][]2[
2

;2

]1[][
1

1;

][][

][]1[
1

;1

)()(

appcontextextdonglecont
appcontextextdonglecont

appcontextextlaptopcontextlaptopcontextdonglecont

laptopcafeteria
laptopcafeteria

laptopbuildingbuildingcafeteria

cafeteriaroom
cafeteriaroom

cafeteriabuildingbuildingroom

roomcafeteria
roomcafeteria

roombuildingbuildingcafeteria

cafeteriaadversary
cafeteriaadversary

cafeteriaroom
cafeteriaroom

cafeteriabuildingbuildingroom

rootkit

rootkit

rootkitrecieverootkitemit

dongle

dongle

dongledongle

employee

employee

employeeemployee

adversary

adversary

adversaryadversary

adversary

dongle

adversary

adversary

adversaryadversary

183

Result:

building[room1[adversary[0]] | cafeteria[0] |
room2[employee[laptop[dongle[donglecontext[0]] |
laptopcontext[appcontext[rootkit[0]]]]]]]

 (YES)

Road apple 2:

Although the model can present the physical/digital transitions, the model can not
present the interaction employee-adversary. A similar approach as presented in the
ambient calculus example will require generating new rules besides pick up/leave
down. We show an approach that might be used to present the attack to a greater
extent. First, we add context to people. Second, we use special agents which will
present messages and reside in the context in people. The world for the road apple
attack with direct interaction between the employee and the adversary would be:

room[adversary[usb[usbcontext[rootkit[0]]] |humancontext1[message1agent[0]] |
employee[laptop[laptopcontext[0]] | humancontext2[message2agent[0]]]

Next, we need to add rules for exchanging messages between people, such as:

]2[]1[
21

2;1

1

1

)1()1(

xthumancontecontexthuman
xthumancontexthumanconte

xthumanconteemployeeemployeexthumanconte

agentmessage

agentmessage

agentmessagerecieveagentmessageemit

(NO)

184

Model of Dragovic

Tampering:

 leave(Data)

The model of Dragovic, besides providing attributes that define the tamper
resistance of a device, provides information for the sensitivity of the data inside
the device, the level of exposure of this data, as well as additive protection of
multiple types of containers. The additional information is not provided because it
is out of the scope of the paper. For further information refer to [35,36].
(YES)

Coldboot attack:

Initial:

tr = tamper resistance
room:tr=0;[laptop1:tr=0.2;[RAM:tr=0.5;[key:tr=0[0]]] | laptop2:tr=0.2;[0]]

Transformations:

leave(Room/Laptop1/RAM)
update(RAM, tamper resistance = 0.8)
enter(RAM, Room/Laptop2)
update(RAM, tamper resistance = 0.2)

Result:
room:tr=0;[laptop1:tr=0.2; | laptop2:tr=0.2;[RAM:tr=0.5;[key:tr=0;[0]]]]

Besides providing information about the movement of the RAM with the data, the
model provides information for the degradation of the data inside the RAM when
the RAM is removed from the laptop.
(YES)

185

Road apple 1:

Initial:
For brevity, we assume the containers to have no attributes.

building [room1[adversary[dongle [rootkit[0]]]] | cafeteria[0] |
room2[employee[laptop[0]]]]

Transformations:

migrate (building/room1/adversary, building/cafeteria)
migrate (building/cafeteria/adversary/dongle, building/cafeteria)
migrate (building/cafeteria/adversary, building/room1)
migrate (building/room2/employee, building/cafeteria)
migrate (building/cafeteria/dongle, building/cafeteria/employee/laptop)
migrate (building/cafeteria/employee/laptop/dongle/rootkit,
building/cafeteria/employee/laptop)

Result:
building[room1[adversary[0]] | cafeteria[0] | room2[employee[laptop[dongle

[rootkit[0]]]]]
(YES)

Road apple 2:

Initial:

room[adversary[dongle[rootkit[0]]] | employee[laptop[0]]]

Transformations:
migrate (Room/Adversary/Dongle, Room/Employee/Laptop)
migrate (Room/Employee/Laptop/Dongle/Rootkit, Room/Employee/Laptop)

Result:
room[adversary[0] | employee[laptop[dongle[0] |rootkit[0]]]]

This model also does not present interaction between people. A workaround will
be similar as in modeling the road apple example with Scott’s model.
(NO)

Appendix B

Rules of engagement

Rules of engagement

I, (name of student) agree to perform penetration tests for

(name of researcher)

I understand that the participation of is completely voluntary. At any time, I can

stop my participation.

I fully oblige to the following rules of engagement:

1. I will only execute attacks that are pre-approved by the researcher and only

to an assigned target.

2. I am not allowed to cause any physical damage to university property, except

for Kensington locks.

3. I am not allowed to physically harm any person as part of the test.

4. I will video or audio record all my activities while interacting with people

during the penetration test as a proof that no excessive stress or panic is

caused to anyone.

5. If I am caught by a guard of a police officer, I will not show any physical

resistance.

Signature of researcher: Date:

Signature of student: Date:

186

Appendix C

Informed consent
Informed consent

I, (name of employee) agree to participate in the study performed

by (name of the research group).

I understand that the participation of the study is completely voluntary. At any

time, I can stop my participation and obtain the data gathered from the study, have

it removed from the database or have it destroyed.

The following points have been explained to me:

1. The goal of this study is to gather information of laptop usage. Participation

in this study will yield more information concerning the habits people have

in using mobile devices.

2. I shall be asked to work for 5 min every day on a laptop for one month.

The laptop can be monitored and/or recorded using a keylogger and a web-

camera. At the end of the study, the researcher will explain the purpose of

the study.

3. No stress or discomfort should result from participation in this study.

4. The data obtains from this study will be processed anonymously and can

therefore not be made public in an individually identifiable manner.

5. The researcher will answer all further questions on this study, now or during

the cause of the study.

Signature of researcher: Date:

Signature of employee: Date:

187

Appendix D

Sample report of a laptop theft

Report 2009/0670, 6-07-2009, 1/1

Date of the incident: Wednesday, 01 July 2009

Time of the incident: 14:00h

Place: 4th floor, main building

Person reporting: Alice

Description:

On the above date, Mr.”Bob” came to the security post and informed

me that his laptop and the laptop of his colleague were stolen from room

Yellow. Mr.”Bob” informed me that at 13:45 they both left the room Yellow

without anyone inside. After returning to the room at 14:00, both laptops

were gone. Both laptops were locked to a table with a Kensington lock.

The locks were cut. Room Yellow is accessible only by using an access pass.

Actions taken:

I called to the Facility management and asked if someone used an

access pass to enter the room Yellow between 13:45 and 14:00. I was

informed that only the pass of Mr.”Dave” was used. However, the pass of

Mr.”Dave” was not used for entering or leaving the building, and we cannot

reach him. We searched the camera images from this period, but we could

not find any useful information.

188

Appendix E

Get out of jail card

Get out of jail card

The student is performing a penetration test in the period between

xxth and xxth of September. The test is approved by xxxxxxx (researcher name)

and the security management of xxxxxxx. In case of being caught while executing

the penetration test, please contact xxxxxxx (researcher) tel: xxxxxxx or xxxxxxx

(security manager) tel: xxxxxxx at any time of the day.

Signature of researcher:

189

Appendix F

Note left from the testers
Dear Sir/Madam

Your laptop is taken by a team of physical penetration testers. The laptop is not

stolen nor damaged in any way.

These penetration tests are a joint effort between the security management of Uni-

versity of Twente and the Distributed and Embedded Security Group (DIES). The

goal of the tests is to examine the effectiveness of the physical security in the cam-

pus of the University. The tests will help us reduce the number of the increasing

thefts of laptops, computer equipment and lab equipment in the campus.

All the data stored in the laptop will be treated as confidential and will be avail-

able to you upon request. After the all tests are finished, we will invite you for a

debriefing session where we will describe you the methodology we used and the

results we obtained. The same results (anonymized) will be used as case studies in

the training of the security personnel in the University. If you have any questions,

please contact us by mail or by phone at any time.

DIES Group:
Dimkov Trajce Wolter Pieters Pieter Hartel
t.dimkov@utwente.nl w.pieters@utwente.nl p.hartel@utwente.nl

Zilverling 3006 Zilverling 3023 Zilverling 3001

Tel: xxxxxxxxxxx Tel: xxxxxxxxxxx Tel: xxxxxxxxxxx

Security management:
xxxxxxxxxxxxxxxx

xxxx@fb.utwente.nl

Tel: xxxxxxxxxx

190

Appendix G

Successful and unsuccessful
attempts during the penetration
tests
In this appendix we present a summary of all penetration tests performed by the

students, both the successful and unsuccessful.

Table G.1 shows the actions that contributed to the successful penetration tests,

ordered according to the frequency they were used in the successful attempts. For

example, there were 27 successful attempts, where the testers entered the building

during working hours, when the outside doors are open to the public. Thus, from

the frequency of the actions, the easiest way for the tester to obtain the laptop is

to go into the building during working hours, while the custodian is in his office,

and provide a reason why she needs to unlock the laptop and give it to the tester.

Similarly, in Table G.2 we summarize the mechanisms that contributed to the

failed attempts. For example, because of the presence of the employees, the testers

were 7 times not able to enter the office, while they were not able to steal the laptop

3 times because of the Kensington lock. Some of the reasons why the attempts

Enter building Enter office Unlock laptop Leave
working hours (27) someone inside (20) custodian unlocks (19) working hours (26)

obtained a card (2) key from employee (5) bolt cutter (5) using access card (3)

asked an employee (1) room was unlocked (4) laptop was unlocked (3) emergency door (1)

during social event (1) cleaning lady (1) detach from desk (2) during social event (1)

secretary opens (1) found key in office (1)

took the desk with the

laptop (1)

Table G.1: Actions used in successful attempts

191

Chapter G. Successful and unsuccessful attempts during the penetration tests

Enter building Enter office Unlock laptop Leave
locked door (1) employee (7) custodian (6)

custodian (2) Kensington lock (2)

secretary (2) employee (3)

door lock (2) lab officer (2)

guards (1) laptop not found (3)

Table G.2: Reasons why attempts failed

failed were purely coincidental and if repeated could have most likely succeeded.

For example, on few occasions, the custodians despite the rules took the laptop

home. Thus when the testers approached them, although they were willing to hand

over the laptop, they did not have it in the office. Similarly, on some occasions

the mere presence of employees in the office was sufficient to abort the attack,

because it was not matching the scenario the testers were allowed to execute.

There were 31 successful and 31 unsuccessful attempts in total. We distinguished

six elements from each attempt: (1) how the testers entered the building, (2) how

did the testers entered the office where the laptop resides, (3) how the testers cir-

cumvented the Kensington lock, (4) the role the testers took as a disguise and (5) a

qualitative analysis on how high the security awareness of the affected employees

was.

During some attempts, the testers had to circumvent the CCTV surveillance or

record the attempt. In those attempts, we also include this information. During the

unsuccessful attempts, we include the successful actions until the attempt failed,

and the reason why the attempt failed (in bold font).

192

193

TEAM IRA Cornelissen Donker

Enter building working hours working hours working hours

Enter office custodian inside custodian inside custodian inside

Unlock laptop custodian unlocks custodian unlocks custodian unlocks

Leave working hours working hours working hours

Recording hidden camera

Role of pentester coordinator assistant game players/ students ICT Desk

CCTV scouting and hiding hoods scouting and hiding

Resistance MEDIUM. The custodian tried
to call the coordinator but
failed.

HIGH. Testers faked an email
granting them permission on
the laptop. The testers
promised to return the
laptop in a few hours.

HIGH: The custodian asked to
talk to the coordinator for
permission. After talking to a
fake coordinator through a
tester phone, the custodian
accepted to give the laptop.

TEAM Byte Philosophy Laverman Veen
Enter building working hours working hours working hours
Enter office secretary custodian inside custodian inside

Unlock laptop custodian unlocks custodian unlocks custodian unlocks

Leave working hours working hours working hours

Recording camera

Role of pentester coordinator assistants coordinator assistants ICT Desk

CCTV scouting and hiding scouting and hiding Hoods

Resistance LOW. A tester sent a fake
email. The custodian packs
the laptop and leaves it in the
office. The secretary
unlocked the door, and gave
the laptop to the tester.

LOW. The custodian did not
get suspicious and handed in
the laptop.

LOW: The custodian gave the
laptop easily after being told
by the testers he will get the
laptop back in a few hours.

TEAM Nicked X Damhuis
Enter building working hours social engineered a card waits after working hours

Enter office custodian inside cleaning lady key from janitor

Unlock laptop custodian unlocks bolt cutter bolt cutter

Leave working hours using the same card through emergency door

Recording open camera web camera

Role of pentester coordinator assistant PhD researcher students

CCTV used newspapers scouting and hiding scout and hide

Resistance LOW. The custodian believed
in the fake email and handed
in the laptop.

LOW: The employee easily
gave the night card to the
tester. The cleaning lady
easily believed the tester is a
PhD researcher and let him
inside the office.

LOW: The janitor gave the
testers a key from the room
after working hours.

194

TEAM Clerro Flickr Team 8
Enter building working hours working hours working hours
Enter office employee did not lock custodian inside custodian inside

Unlock laptop bolt cutter custodian unlocks custodian unlocks

Leave working hours working hours working hours

Recording camera camera camera

Role of pentester ICT Desk ICT Desk ICT Desk
Resistance MEDIUM: The employee was

convinced to turn in the
laptop, but could not find the
key from the Kensington
lock. While he left the room
to search for the key with
one of the testers, two other
testers entered the room and
cut the Kensington lock.

LOW: The secretary
introduced the tester to the
custodian, thus the custodian
did not doubt anything.
Secretary did not ask for any
identification, nor checked
the fake phone number and
email.

HIGH: The employee
contacted the helpdesk.
Although they informed him
they are not aware of virus
spread, the custodian still
gave the laptop to the
testers. The custodian
required document signed by
the testers that they take the
laptop.

TEAM He Hafidz Team X A
Enter building during social event

when doors are open
working hours working hours working hours

Enter office custodian inside custodian inside room was unlocked key from janitor

Unlock laptop custodian unlocks custodian unlocks laptop was unlocked laptop not locked
Leave same door working hours working hours working hours
Recording camera web camera
Role of pentester students coordinator

assistants
delivery man student

CCTV did not hide scout and hide scout and hide

Resistance VERY HIGH: The
custodian got a (fake)
identification, but
asked them to sign a
document they will
return the laptop.

LOW: After getting
the fake email, the
custodian handed in
the laptop.

LOW: The testers
phoned the only
present employee in
the office, stating
that there is a
package for him. The
employee left the
room unlocked. The
laptop was also
unlocked.

MEDIUM: The janitor
opened the door for
the testers after
being shown a fake
mail. However, he
escorted them during
the theft.

TEAM Awesome 093 Pasta
Enter building working hours working hours night pass from employee
Enter office key from janitor key from janitor use master key
Unlock laptop laptop not locked found key in the desk not locked properly
Leave working hours working hours night pass from employee
Recording web camera web camera camera
Role of pentester student student students preparing a party

CCTV scout and hide scout and hide

Resistance MEDIUM: The janitor opened
the door for the students
after being shown a fake
mail. However, he escorted
them during the theft.

MEDIUM: The janitor opened
the door for the students
after being shown a fake
mail. He did not escort them
to the room.

LOW: The security
officer/janitor gave the
students the master key of
the building.

195

TEAM MCN Team Outcasts Clerro
Enter building working hours working hours working hours
Enter office employee inside custodian inside custodian left unlocked

Unlock laptop detach from desk custodian unlocks bolt cutter

Leave working hours working hours working hours

Recording camera camera Camera

Role of pentester ICT Desk ICT Desk /

Resistance LOW: An employee gave the
laptop without checking the
identity of the testers.

LOW: The custodian gave the
laptop without any request
for identification.

N/A: There was no social
engineering used in this
scenario.

TEAM Team 8 Team X Big Brothers
Enter building working hours working hours working hours
Enter office custodian inside custodian inside custodian inside

Unlock laptop custodian unlocks custodian unlocks custodian unlocks

Leave working hours working hours working hours

Recording audio audio camera

Role of pentester ICT Desk ICT Desk ICT Desk

Resistance MEDIUM: the custodian
asked for credentials, but
was not insisting.

LOW: the custodian did not
challenge the employees.
They presented him only
with a report stating there is
a virus in the laptop.

LOW: The team sent an email
claiming the laptop has a
virus. The custodian gave the
laptop without asking any
question.

TEAM Pasta Flickr The Insiders
Enter building night pass from employee working hours working hours
Enter office room was unlocked custodian inside custodian inside
Unlock laptop take the desk with the laptop custodian unlocks custodian unlocks
Leave use a night pass working hours working hours
Recording camera camera camera
Role of pentester Student ICT Desk ICT Desk

Resistance N/A: There was social
engineering used only to get
the night pass. The testers
used the night pass to get to
the laboratory. They took the
whole desk, and brought it
with 5 other students in
Zilverling. They had also
access to this building.

LOW: The secretary
introduced the tester to the
custodian, thus the custodian
did not doubt anything.
Secretary did not ask for any
identification, nor checked
the fake phone number and
email.

HIGH: The custodian wanted
a receipt. The laptop was
kept in a locked closed,
locked with a Kensington
lock. Thus, she was the only
person in the office that
could access it.

TEAM MCN Team Big Brothers The Insiders
Enter building working hours working hours working hours

Enter office custodian inside custodian inside custodian inside

Unlock laptop custodian unlocks custodian unlocks bolt cutter

Leave working hours working hours working hours

Recording camera Camera camera

Role of pentester ICT Desk ICT Desk ICT Desk

Resistance LOW: The custodian did not
ask any questions.

LOW: The team sent an email
claiming the graphic chipset
is faulty. They came 20min
later to pick up the laptop.
The custodian did not ask
any questions.

LOW: The tester managed to
cut the Kensington lock while
there was another person in
the office. The tester was not
challenged on what he is
doing.

196

TEAM Cornelissen failed X failed X failed
Enter building working hours working hours working hours
Enter office custodian inside custodian inside spotted guards and aborted

Unlock laptop custodian forgets key custodian declines

Leave working hours working hours

Recording

Role of pentester game players ICT Desk

Resistance LOW. However, sent email to
coordinator asking about the
game. Coordinator says he
has never heard of it

MEDIUM: the custodian asks
for an email to confirm that
the laptop needs to be
replaced.

TEAM X failed Veen failed Veen failed
Enter building working hours working hours working hours
Enter office employee inside employee inside custodian inside

Unlock laptop employee declines employee agrees, but no
laptop

custodian did not have the
laptop

Leave

Recording camera camera

Role of pentester master student ICT Desk ICT Desk

Resistance MEDIUM: the employee
opens the door for the
tester, but is reluctant to
search for key for the
Kensington lock, and instead
asks the tester to talk to the
custodian

LOW: the employee is willing
to give the laptop of the
custodian. The custodian
breaks the agreement, and
takes the laptop with him
when he leaves the office.

LOW: the custodian is willing
to give the laptop, but leaves
it to his girlfriend in Belgium.

TEAM Damhuis failed Damhuis failed Damhuis failed
Enter building working hours working hours working hours

Enter office key from janitor secretary rejected employee inside

Unlock laptop employee enters while
stealing the laptop

Leave

Role of pentester students students PhD researcher

Resistance LOW: the janitor handed in
the key without problem.
When the employee enters
the office and spots the
tester, it did not challenge
him.

HIGH: instead of giving the
key, the secretary asked the
custodian to come to work
and talk to the students

TEAM A failed A failed 093 failed
Enter building working hours working hours working hours

Enter office locked custodian inside secretary

Unlock laptop

Leave

Role of pentester student student student

Resistance LOW: An employee got a key
from the secretary to help
the tester, but for some
reason the key did not work.

HIGH: The custodian got
suspicious and did not allow
any theft in his presence.

HIGH: The secretary asked
them to talk to security for
getting the key.

197

TEAM Clerro failed Flickr failed The Insiders failed
Enter building working hours working hours working hours
Enter office custodian inside too many employees inside

the room
custodian inside

Unlock laptop custodian rejects

Leave

Role of pentester delivery person ICT Desk

Resistance N/A: The testers called the
custodian trying to tell her
that there is a delivery
waiting downstairs. The
custodian did not pick up the
phone.

N/A: After seeing that there
are many people in the
office, the testers left the
area.

HIGH: the custodian rejected
to unlock the laptop or give it
to the tester. The custodian
insisted the laptop should be
fixed on the spot.

TEAM MCN Team failed MCN Team failed Outcasts failed
Enter building working hours cannot enter the building working hours
Enter office left room unlocked employee inside

Unlock laptop too short time to cut the
lock

laptop not present

Leave

Role of pentester ICT Desk

Resistance N/A: The room was left
empty only for a short time.
The testers did not have
enough time to cut the
Kensington lock.

N/A: The testers tried to
enter the building after
working hours and social
engineer the cleaning lady.
The cleaning ladies are
present only in the morning.

LOW: The employee was
willing to give the laptop of
the custodian, but they could
not find it.

TEAM Outcasts failed Pasta failed Pasta failed
Enter building working hours working hours working hours

Enter office custodian insider custodian inside too many people inside

Unlock laptop laptop not present stopped by lab officer

Leave

Role of pentester ICT Desk Students students

Resistance LOW: The custodian was
willing to give the laptop, but
she took it home and the
laptop was not at work.

HIGH: The employees in the
lab were suspicious on the
testers. The man responsible
for the security in the lab
stopped the testers and
asked them to leave the lab.

N/A: The room was occupied
with many people, making it
impossible for the testers to
steal the laptop.

TEAM Pasta failed Pasta failed Pasta failed
Enter building working hours with a pass working hours

Enter office too many people inside unlocked office could not see laptop from
window

Unlock laptop could not find laptop

Leave

Role of pentester students Students students

Resistance N/A: The room was occupied
with many people, making it
impossible for the testers to
steal the laptop.

N/A: The room was empty,
but the testers could not
locate the laptop.

N/A: The testers could not
locate the laptop.

198

TEAM Pasta failed Pasta failed Pasta failed
Enter building working hours working hours working hours
Enter office unlocked office too many people custodian inside

Unlock laptop could not find laptop stopped by lab officer

Leave

Role of pentester students Students students

Resistance N/A: The testers could not
locate the laptop.

N/A: The room was occupied
with many people, making it
impossible for the testers to
steal the laptop.

HIGH: The employees in the
lab were suspicions. The
person responsible for the
security in the lab stopped
the testers and asked them
to leave the lab. This time he
asked them to speak with the
custodian.

TEAM Outcasts failed Team X failed MCN Team failed
Enter building working hours working hours working hours
Enter office employee lets them in employee locks door behind too many employees inside

the room
Unlock laptop cannot find the key

Leave

Role of pentester ICT Desk delivery person

Resistance HIGH: After the failed
attempt, the custodian
contacted the coordinator.
The testers did not try any
other attempt.

HIGH: The testers called the
employee and told him there
is a package for him in the
reception. When the
employee left, he locked the
door behind.

N/A: After seeing that there
are many people in the
office, the testers left the
area.

TEAM Flickr failed
Enter building working hours

Enter office secretary let him in

Unlock laptop laptop was unlocked but no
positive ID

Leave

Role of pentester ICT Desk

Resistance MEDIUM: The secretary let
the testers in the office and
let them run software from a
USB drive. She also left them
for a few minutes. However,
the tester could not get a
positive identification
whether the laptop is the
target and did not steal the
laptop.

Appendix H

Variables used in the quantitative
analysis

199

Chapter H. Variables used in the quantitative analysis

N Variable Description Encoding

Yes No

1 SocialEng An individual was social engineered 1 0

2 PhysicalTheft A physical theft took place 1 0

3 WorkingHours The students entered the building during working hours 1 0

4 SocialEngCard The students entered the building using an access card 1 0

5 AskEmployee The students entered the building by asking an employee 1 0

6 DuringSocialEvent The students entered the building during a social event 1 0

7 SomeoneInside The students entered the office while someone was inside 1 0

8 KeyFromEmployee The students entered the office with a key from an em-

ployee

1 0

9 UnlockedRoom The students entered an unlocked office 1 0

10 CleaningLady The students entered the office with help of a cleaning

lady

1 0

11 Secretary The students entered the office with the help of a secretary 1 0

12 CustodianUnlocks The custodian unlocks the Kensington lock 1 0

13 BoltCutter The students circumvent the lock using a bolt cutter 1 0

14 NotLockedKL The laptop was not locked with a Kensington lock 1 0

15 DetachFromDesk The Kensington lock was detached from the desk 1 0

16 FindKeyInDesk The students found the key from the Kensington lock 1 0

17 TakeDesk The students circumvented the Kensington lock by taking

the desk where the laptops is lock

1 0

18 WorkingHoursL The students left the building during working hours 1 0

19 UsingAccessCardL The students left the building using an access card 1 0

20 DuringSocialEventL The students left the building during a social event 1 0

21 EmergencyDoor The students left the building through the emergency exit 1 0

22 ICTEmployee The students took the role of an ICT employee 1 0

23 Student The students took the role as students 1 0

24 CoordinatorAss The students took the role as coordinator assistants 1 0

25 PhDStudent The students took the role as PhD Students 1 0

26 DeliveryPerson The students took the role as delivery person 1 0

27 Custodian The students approached the custodian 1 0

28 Employee The students approached an employee 1 0

29 Janitor The students approached the janitor 1 0

30 CleaningLadyApp The students approached the cleaning lady 1 0

Figure H.1: Independent variables

200

Bibliography

Author’s Publications

— Refereed Conferences —

[1] T. Dimkov, W. Pieters, and P. Hartel. Effectiveness of physical, social

and digital mechanisms against laptop theft in open organizations. In

IEEE/ACM International Conference on Cyber, Physical and Social Com-
puting, pages 727–732. IEEE, 2010. (Subsumed by Chapter 7 of this

thesis).

[2] T. Dimkov, W. Pieters, and P. Hartel. Portunes: representing attack sce-

narios spanning through the physical, digital and social domain. In Pro-
ceedings of the 2010 joint conference on Automated reasoning for security
protocol analysis and issues in the theory of security, ARSPA-WITS’10,

pages 112–129, Berlin, Heidelberg, 2010. Springer. (Subsumed by Chap-

ter 3 of this thesis).

[3] T. Dimkov, W. Pieters, and P. Hartel. Training students to steal: a practical

assignment in computer security education. In Proceedings of the 42nd
ACM Technical Symposium on Computer science education, SIGCSE ’11,

pages 21–26, New York, NY, USA, 2011. ACM. (Subsumed by Chapter 8

of this thesis).

[4] T. Dimkov, Q. Tang, and P. H. Hartel. On the inability of existing security

models to cope with data mobility in dynamic organizations. In Proceed-
ings of the Workshop on Modeling Security, pages 1–13. CEUR Workshop

Proceedings, 2008. (Subsumed by Chapter 2 of this thesis).

[5] T. Dimkov, A. van Cleeff, W. Pieters, and P. Hartel. Two methodologies

for physical penetration testing using social engineering. In Proceedings of

201

the 26th Annual Computer Security Applications Conference, ACSAC ’10,

pages 399–408, New York, NY, USA, 2010. ACM. (Subsumed by Chapter

6 of this thesis).

[6] A. van Cleeff, T. Dimkov, W. Pieters, and R. Wieringa. Realizing secu-

rity requirements with physical properties: A case study on paper voting.

In Prooceedings of the International Conference in IT Convergence and
Security, Suwon, South Korea, 2012. Springer. In print.

— Book Chapters —

[7] C.W. Probst, M.A. Sasse, W. Pieters, T. Dimkov, E. Luysterborg, and M. Ar-

naud. European Data Protection: In good health?, chapter Privacy pen-

etration testing: How to establish trust in your cloud provider? Springer,

2012. In print.

— Professional Publications —

[8] T. Dimkov and W. Pieters. Physical Penetration Testing: A Whole New

Story in Penetration Testing. PenTest Magazine, 1(3):20–23, 2011.

Bibliography

[9] M. Abramowitz and I.A. Stegun. Handbook of mathematical functions
with formulas, graphs, and mathematical tables, volume 55. Dover publi-

cations, 1964.

[10] M. Abrams and D. Bailey. Abstraction and refinement of layered security
policy, pages 126–136. IEEE Computer Society Press, 1995.

[11] W. Allsopp. Unauthorised Access: Physical Penetration Testing For IT
Security Teams. Wiley, 2009.

[12] M. AlZarouni. The reality of risks from consented use of usb devices. In

Proceedings of the 4th Australian Information Security Conference, pages

5–15, 2006.

[13] J. R. Aman, J. E. Conway, and C. Harr. A capstone exercise for a cyber-

security course. Journal in Computing in Small Colleges, 25(5):207–212,

2010.

[14] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based net-

202

work vulnerability analysis. In CCS ’02: Proceedings of the 9th ACM con-
ference on Computer and communications security, pages 217–224. ACM,

2002.

[15] T. Ashish. Social engineering: An attack vector most intricate to tackle.

Technical report, Infosecwriters, 2007.

[16] N. Barrett. Penetration testing and social engineering hacking the weakest

link. Information Security Technical Report, 8(4):56–64, 2003.

[17] R. Baskerville and M. Siponen. An information security meta-policy for

emergent organizations. Logistics Information Management, 15:337–346,

2002.

[18] D. Baumrind. Research using intentional deception. Ethical issues revis-

ited. The American psychologist, 40(2):165–174, 1985.

[19] L. Bettini, M. Loreti, and R. Pugliese. An infrastructure language for open

nets. In SAC ’02: Proceedings of the 2002 ACM Symposium on Applied
Computing, pages 373–377. ACM, 2002.

[20] C. Braghin, A. Cortesi, R. Focardi, and S. Bakel. Boundary inference for

enforcing security policies in mobile ambients. In TCS ’02: Proceedings of
the IFIP 17th World Computer Congresse, pages 383–395, Deventer, The

Netherlands, 2002. Kluwer, B.V.

[21] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents:

The calculus of boxed ambients. ACM Transactions on Information and
System Security, 26(1):57–124, 2004.

[22] L. Cardelli, G. Ghelli, and A.D. Gordon. Types for the ambient calculus.

Information and Computing, 177(2):160–194, 2002.

[23] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[24] E.M. Chan, J.C. Carlyle, F.M. David, R. Farivar, and R.H. Campbell. Boot-

jacker: compromising computers using forced restarts. In CCS ’08: 15th
ACM conference on Computer and communications security, pages 555–

564, NY, USA, 2008. ACM.

[25] F. Chen, J. Su, and Y. Zhang. A scalable approach to full attack graphs

generation. In ESSoS ’09: Proceedings of the 1st International Sympo-
sium on Engineering Secure Software and Systems, pages 150–163, Berlin,

Heidelberg, 2009. Springer-Verlag.

203

[26] F. Chen, R. Tu, Y. Zhang, and J. Su. Two scalable analyses of compact

attack graphs for defending network security. In Proceedings of The Inter-
national Conference on Networks Security, Wireless Communications and
Trusted Computing, volume 1, pages 627–632, Los Alamitos, CA, USA,

2009. IEEE Computer Society.

[27] L. Chen, D. Feng, and L. Ming. The security threats and corresponding

measures to distributed storage systems. In Proceedings of the 7th inter-
national conference on Advanced parallel processing technologies, volume

4847, pages 551–559. Springer, 2007.

[28] Y. Chen, B. Boehm, and L. Sheppard. Value driven security threat model-

ing based on attack path analysis. In Hawaii International Conference on
System Sciences, pages 1530–1605, Los Alamitos, CA, USA, 2007. IEEE

Computer Society.

[29] R. Chinchani, A. Iyer, H. Ngo, and S. Upadhyaya. Towards a theory of

insider threat assessment. In Proceedings of the International Conference
on Dependable Systems and Networks. IEEE Computer Society, 2005.

[30] J. Clark, S. Leblanc, and S. Knight. Compromise through usb-based hard-

ware trojan horse device. Future Generation Computer Systems, 27(5):555

– 563, 2011.

[31] J. Clark, S. Leblanc, and S. Knight. Risks associated with usb hardware

trojan devices used by insiders. In 2011 IEEE International Systems Con-
ference (SysCon),, pages 201 –208, 2011.

[32] J. Concato, A.R. Feinstein, and T.R. Holford. The risk of determining risk

with multivariable models. Annals of Internal Medicine, 118(3):201–210,

1993.

[33] J. Concato, P. Peduzzi, T.R. Holford, and A.R. Feinstein. Importance of

events per independent variable in proportional hazards analysis i. back-

ground, goals, and general strategy. Journal of clinical epidemiology,

48(12):1495–1501, 1995.

[34] D. B. Cornish. The procedural analysis of offending and its relevance for

situational prevention. Crime Prevention Studies, 3:151–196, 1994.

[35] D.B. Cornish and R.V. Clarke. Opportunities, precipitators and criminal

decisions: A reply to Wortley’s critique of situational crime prevention.

Crime Prevention Studies, 16:41–96, 2003.

[36] R. De Nicola and M. Loreti. A modal logic for mobile agents. ACM
Transactions on Computer Logic, 5(1):79–128, 2004.

204

[37] L.L. DeLooze. Counter hack: Creating a context for a cyber forensics

course. In FIE’08: Frontiers in Education Conference, pages 1–6, New

York, 2008. IEEE.

[38] J. DePoy, J. Phelan, P. Sholander, B.J. Smith, G.B. Varnado, G.D. Wyss,

J. Darby, and A. Walter. Critical infrastructure systems of systems assess-

ment methodology. Technical Report SAND2006-6399, Sandia National

Laboratories, 2007.

[39] T. Dimkov, W. Pieters, and P. Hartel. Laptop theft: a case study on the

effectiveness of security mechanisms in open organizations (extended ab-

stract). In CCS ’10: Computer and Communications Security, pages 666–

668, NY, USA, 2010. ACM.

[40] B. Dragovic and J. Crowcroft. Information exposure control through data

manipulation for ubiquitous computing. In NSPW ’04: Proceedings of the
2004 workshop on New security paradigms, pages 57–64. ACM, 2004.

[41] B. Dragovic and J. Crowcroft. Containment: from context awareness to

contextual effects awareness. In Proceedings of 2nd Inernational Workshop
on Software Aspects of Context. CEUR Workshop Proceedings, 2005.

[42] B. Endicott-Popovski and D.L. Lockwood. A Social Engineering Project

in a Computer Security Course. Academy of Information and Management
Sciences Journal, 9(1):37–44, 2006.

[43] M. Felson. Those who discourage crime. Crime and place, 4:53–66, 1995.

[44] M. Felson and L. Cohen. Human ecology and crime: A routine activity

approach. Human Ecology, 8:389–406, 1980. 10.1007/BF01561001.

[45] P. Finn and M. Jakobsson. Designing ethical phishing experiments. Tech-
nology and Society Magazine, IEEE, 26(1):46–58, 2007.

[46] P.R. Finn. Research Ethics: Cases and Materials, chapter The ethics of

deception in research, pages 87–118. Indiana University Press, 1995.

[47] National Commission for the Protection of Human Subjects of Biomedi-

cal and Behavioral Research. The Belmont report: Ethical principles and

guidelines for the protection of human subjects of research. Technical

report, 1978.

[48] J. A. Goguen and J. Meseguer. Security policies and security models.

In 3rd Symposium on Security and Privacy (S&P), pages 11–20. IEEE

Computer Society, 1982.

205

[49] B.L.A. Goodman. Snowball sampling. The Annals of Mathematical Statis-
tics, 32(1):148–170, 1961.

[50] D. Gorla and R. Pugliese. Resource access and mobility control with dy-

namic privileges acquisition. In Proceedings of 30th International Col-
loquium on Automata, Languages and Programming (ICALP’03), pages

119–132. Springer, 2003.

[51] C. Greenlees. An intruder’s tale-[IT security]. Engineering & Technology,

4(13):55–57, 2009.

[52] D. Ha, S. Upadhyaya, H. Ngo, S. Pramanik, R. Chinchani, and S. Mathew.

Insider threat analysis using information-centric modeling. In IFIP Inter-
national Conference on Digital Forensics, pages 55–73. Springer, 2007.

[53] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A.

Calandrino, A.J. Feldman, J. Appelbaum, and E.W. Felten. Lest we re-

member: Cold boot attacks on encryption keys. USENIX Security, pages

45–60, 2008.

[54] W.R. Hartmann, P. Manchanda, H. Nair, M. Bothner, P. Dodds, D. Godes,

K. Hosanagar, and C. Tucker. Modeling social interactions: Identification,

empirical methods and policy implications. Marketing letters, 19(3):287–

304, 2008.

[55] R. Hasan, S. Myagmar, A. J. Lee, and W. Yurcik. Toward a threat model

for storage systems. In 1st ACM Workshop on Storage Security and Sur-
vivability (StorageSS), pages 94–102. ACM, Nov 2005.

[56] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-

currency. Journal of ACM, 32(1):137–161, 1985.

[57] M. A. Jackson. Problem Frames: Analysing and Structuring Software
Development Problems. Addison-Wesley, 2001.

[58] Wayne A. Jansen, Serban I. Gavrila, and Vlad Korolev. Proximity-based

authentication for mobile devices. In Proceedings of The 2005 Interna-
tional Conference on Security and Management, pages 398–404, 2005.

[59] X. Jiang, J.I. Hong, and J.A. Landay. Approximate information flows:

Socially-based modeling of privacy in ubiquitous computing. In Proceed-
ings of the 4th international conference on Ubiquitous Computing, pages

176–193. Springer, 2002.

[60] X. Jiang and J.A. Landay. Modeling privacy control in context-aware sys-

tems. IEEE Pervasive Computing, 1(3):59–63, 2002.

206

[61] G. Kitteringham. Lost laptops = lost data: Measuring costs, managing

threats. Crisp report, ASIS International Foundation, 2008.

[62] I. Kotenko, M. Stepashkin, and E. Doynikova. Security analysis of in-

formation systems taking into account social engineering attacks. In Pro-
ceedings of the 19th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pages 611 – 618, 2011.

[63] D. Lacey. Inventing the future–the vision of the Jericho forum. Information
Security Technical Report, 10:186–188, 2005.

[64] P.Y. Logan and A. Clarkson. Teaching students to hack: curriculum is-

sues in information security. In SIGCSE’05: Special Interest Group on
Computer Science Education, pages 157–161. ACM, 2005.

[65] M. Marshall, M. Martindale, R. Leaning, and D. Das. Data loss barometer.

Technical report, KPMG, UK, 2008.

[66] S. Mathew, S. Upadhyaya, D. Ha, and H.Q. Ngo. Insider abuse compre-

hension through capability acquisition graphs. In Proceedings of the 11th
International Conference on Information Fusion, pages 1–8, 2008.

[67] V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing. Ranking attack

graphs. In Recent advances in intrusion detection, pages 127–144. Springer,

2006.

[68] A.M. Minkley. Cyberattacks: a lab-based introduction to computer secu-

rity. In SIGITE ’06: Proceedings of the 7th conference on Information
technology education, pages 39–46. ACM, 2006.

[69] K.D. Mitnick and W.L. Simon. The Art of Deception: Controlling the
Human Element of Security. Wiley, 2002.

[70] R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A kernel language

for agents interaction and mobility. IEEE Transactions on software engi-
neering, 24(5):315–330, 1998.

[71] Code of Federal Regulations. Title 45: Public welfare department of health

and human services. part 46: Protection of human subjects. Technical

report, 2005.

[72] E. Oladimeji. Security threat modeling and analysis: A goal-oriented ap-

proach. In Proceedings of the 10 th IASTED International Conference on
Software-Engineering and Applications. ACTA Press, 2006.

[73] I. M. Olson and M. D. Abrams. Infomation Security Policy, pages 160–169.

IEEE Computer Society Press, 1995.

207

[74] X. Ou, S. Govindavajhala, and A.W. Appel. Mulval: a logic-based net-

work security analyzer. In Proceedings of the 14th conference on USENIX
Security Symposium, page 8. USENIX Association, 2005.

[75] G. Palmer. De-perimeterisation: Benefits and limitations. Information
Security Technical Report, 10:189–203, 2005.

[76] B.A. Pashel. Teaching students to hack: ethical implications in teaching

students to hack at the university level. In InfoSecCD ’06: Proceedings
of the 3rd annual conference on Information security curriculum develop-
ment, pages 197–200, NY, USA, 2006. ACM.

[77] J. Pauli and D. Xu. Threat-driven architectural design of secure information

systems. In Proceedings of the 7th International Conference on Enterprise
Information Systems, pages 136–143. ICEIS, 2005.

[78] P. Peduzzi, J. Concato, A.R. Feinstein, and T.R. Holford. Importance of

events per independent variable in proportional hazards regression analysis

ii. accuracy and precision of regression estimates. Journal of clinical
epidemiology, 48(12):1503–1510, 1995.

[79] P. Peduzzi, J. Concato, E. Kemper, T.R. Holford, and A.R. Feinstein. A

simulation study of the number of events per variable in logistic regression

analysis* 1. Journal of clinical epidemiology, 49(12):1373–1379, 1996.

[80] W. Pieters. Representing humans in system security models: An actor-

network approach. Journal of Wireless Mobile Networks, Ubiquitous Com-
puting, and Dependable Applications, 2(1):75–92, 2011.

[81] L. Ponemon. The human factor in laptop encryption. Technical report,

Ponemon Institute, 2008.

[82] L. Ponemon. Cost of a lost laptop. Technical report, Ponemon Institute,

2009.

[83] A.A. Prayogi, J. Park, and E. Hwang. Selective role assignment on dynamic

location-based access control. In Proceedings of International Conference
on Convergence Information Technology, pages 2136–2135, 2007.

[84] C. W. Probst, R. R. Hansen, and F. Nielson. Where can an insider attack?

In Workshop on Formal Aspects in Security and Trust (FAST 2006), pages

127–142. Springer, 2006.

[85] C.W. Probst and R.R. Hansen. An extensible analysable system model.

Information Security Technical Report, 13(4):235–246, 2008.

208

[86] M.R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, and A. Moore. In-

sider threat study: Illicit cyber activity in the banking and finance sector.

U.S. Secret Service and CERT Coordination Center Software Engineering
Institute, pages 1–25, 2004.

[87] I. Ray and N. Poolsapassit. Using attack trees to identify malicious attacks

from authorized insiders. In Preceedings of the European Symposium on
Research in Computer Security, pages 231–246. Springer, 2005.

[88] J. Rees, S. Bandyopadhyay, and E.H. Spafford. Pfires: a policy framework

for information security. Communications of the ACM, 46:101–106, 2003.

[89] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno. Privacy-

preserving location tracking of lost or stolen devices: cryptographic tech-

niques and replacing trusted third parties with dhts. In Proceedings of the
Usenix Security Symposium, pages 275–290. USENIX Association, 2008.

[90] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 3(1):30–50, 2000.

[91] D.J. Scott. Abstracting Application-Level Security Policy for Ubiquitous
Computing. PhD thesis, University of Cambridge, 2004.

[92] D.J. Scott, A. Beresford, and A. Mycroft. Spatial policies for sentient

mobile applications. In Proceedings of the 4th International Workshop
on Policies for Distributed Systems and Networks, pages 147–157, USA,

2003. IEEE Computer Society.

[93] A. Shah and J. Giffin. Analysis of rootkits: Attack approaches and de-

tection mechanisms. Technical report, Georgia Institute of Technology,

2008.

[94] C. Soghoian. Legal risks for phishing researchers. In eCrime Researchers
Summit, 2008, pages 1–11. IEEE, 2008.

[95] J. Sommers. Educating the next generation of spammers. In SIGCSE’10:
Special Interest Group on Computer Science Education, pages 117–121,

Wisconsin, USA, 2010. ACM.

[96] F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press Redmond,

USA, 2004.

[97] S. Trpe and J. Eichler. Testing production systems safely: Common pre-

cautions in penetration testing. In Proceedings of Testing: Academic and
Industrial Conference (TAIC PART 2009), pages 205–209. IEEE Computer

Society, 2009.

209

[98] S. Türpe, A. Poller, J. Steffan, J.P. Stotz, and J. Trukenmüller. Attacking the

BitLocker Boot Process. In Trust ’09: Proceedings of the 2nd International
Conference on Trusted Computing, pages 183–196. Springer-Verlag, 2009.

[99] E. Van Den Berg, S. Uphadyaya, P.H. Ngo, M. Muthukrishnan, and R. Palan.

Mitigating the insider threat using high-dimensional search and modeling.

Technical report, DTIC Research Report ADA450159, 2006.

[100] J. Walker. The extended security perimeter. Information Security Technical
Report, 10:220–227, 2005.

[101] L. Wang and S. Jajodia. An approach to preventing, correlating, and pre-

dicting multi-step network attacks. Intrusion Detection Systems, pages

93–128, 2008.

[102] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using

attack graphs. Computer Communications, 29(18):3812–3824, 2006.

[103] L. Wang, A. Singhal, and S. Jajodia. Measuring the overall security of

network configurations using attack graphs. In Proceedings of the 21st an-
nual IFIP WG 11.3 working conference on Data and applications security,

pages 98–112. Springer, 2007.

[104] R. Wieringa. Conceptual modeling in social and physical contexts. Tech-

nical Report TR-CTIT-08-40, Centre for Telematics and Information Tech-

nology, University of Twente, 2008.

[105] R. Willison and M. Siponen. Overcoming the insider: reducing employee

computer crime through situational crime prevention. Communications of
the ACM, 52(9):133–137, 2009.

[106] J.M. Wing. Scenario Graphs Applied to Network Security, chapter 9, pages

247–277. Morgan Kaufmann, 2007.

[107] M. Workman. Gaining access with social engineering: An empirical

study of the threat. Information Security Journal: A Global Perspective,

16(6):315–331, 2007.

[108] D. Xu and K.E. Nygard. Threat-driven modeling and verification of secure

software using aspect-oriented petri nets. IEEE Transactions on Software
Engineering, 32(4):265–278, 2006.

210

Web references

[109] J. Butler and S. Sparks. Windows rootkits of 2005, part two. www.
securityfocus.com/infocus/1851, 2005. Last accessed: 08.07.2011.

[110] Infosec Research Council. Hard problem list. www.infosec-research.
org/docs_public/, 2005. Last accessed: 08.07.2011.

[111] J. Heasman. Implementing and detecting a pci rootkit. Presented at Black

Hat Europe, 2006.

[112] J. Heasman. Implementing and detecting an acpi rootkit. Presented at

Black Hat Federal, 2006.

[113] P. Herzog. OSSTMM 2.2–Open Source Security Testing Methodology

Manual. www.isecom.org/osstmm, 2006. Last accessed: 08.07.2011.

[114] P. Kleissner. Stoned bootkit. Presented at Black Hat USA, 2009.

[115] Microsoft. Microsoft threat analysis and modeling v3. www.archive.
msdn.microsoft.com/tam, 2007. Last accessed: 08.07.2011.

[116] B. Rudis. Protecting road warriors: Managing security for mobile users,

part one. www.securityfocus.com/infocus/1777, 2004. Last

accessed: 08.07.2011.

[117] B. Rudis. Protecting road warriors: Managing security for mobile users,

part two. www.securityfocus.com/infocus/1781, 2004. Last

accessed: 08.07.2011.

[118] J. Ryder. Laptop security, part one: Preventing laptop theft. www.
securityfocus.com/infocus/1186, 2001. Last accessed: 08.07.2011.

[119] J. Ryder. Laptop security, part two: Preventing information loss. www.
securityfocus.com/infocus/1187, 2001. Last accessed: 08.07.2011.

[120] P. Saitta, B. Larcom, and M. Eddington. Trike v.1 methodology docu-

ment [draft]. www.octotrike.org/papers/, 2005. Last accessed:

08.07.2011.

[121] Absolute Software. Lojack for laptops. www.lojackforlaptops.
com. Last accessed: 07.08.2011.

[122] S. Stasiukonis. Social engineering the usb way. http://www.darkreading.

211

com/security/perimeter-security/208803634, 2006. Last

accessed: 08.07.2011.

[123] Seagate Technology. Can your computer keep a secret?

www.trustedstrategies.com/papers/, 2007. Last accessed:

08.07.2011.

212

Titles in the IPA Dissertation Series since 2005

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty

of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-

ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.

Formal Specification and Analysis of
Hybrid Systems. Faculty of Math-

ematics and Computer Science and

Faculty of Mechanical Engineering,

TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty

of Mathematics and Natural Sciences,

UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,

Mathematics and Computer Science,

RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,

VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of
JML programs. Faculty of Science,

Mathematics and Computer Science,

RU. 2006-08

B. Markvoort. Towards Hy-
brid Molecular Simulations. Fac-

ulty of Biomedical Engineering,

TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and

Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and

Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.

Faculty of Science, Mathematics and

Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic.

Faculty of Sciences, Division of

Mathematics and Computer Science,

VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.

Faculty of Mathematics and Computer

Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of

Science, Mathematics and Computer

Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of

Science, Mathematics and Computer

Science, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of

Mathematics and Computer Science,

TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.

Faculty of Mathematics and Computer

Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of
Distributed Systems: Semantics, Im-
plementation and Composition. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of

Natural Sciences, Mathematics, and

Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of Math-

ematics and Computing Sciences,

RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,

Mathematics, and Computer Science,

UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,

Mathematics and Computer Science,

RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of

Mathematics and Computer Science,

TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,

Mathematics and Computer Science,

RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Pro-
cesses. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-

gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,

Division of Mathematics and Com-

puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series
of Empirical Studies about the UML.

Faculty of Mathematics and Computer

Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-

ences, Mathematics, and Computer

Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of

Electrical Engineering, Mathematics,

and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.

Faculty of Mathematics and Computer

Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.

Faculty of Mechanical Engineering,

TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,

and Assimilation of Language Con-
glomerates. Faculty of Science,

UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Exchange Proto-
cols. Faculty of Sciences, Division of

Mathematics and Computer Science,

VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-

gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and

Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.

Faculty of Mathematics and Computer

Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive
Wildcards. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of

Science, Mathematics and Computer

Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verifi-
cation for Robust Composition of As-
pects. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2008-15

E.M. Bortnik. Formal Methods
in Support of SMC Design. Fac-

ulty of Mechanical Engineering,

TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of

Mathematics and Computer Science,

TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and

Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of

Mathematics and Computer Science,

TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Nat-

ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-

ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and

Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of

Mathematics and Computer Science,

TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.

Faculty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Val-
idating Distributed Embedded Real-
Time Control Systems. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,

Mathematics and Computer Science,

RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and

Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of

Mathematics and Computer Science,

TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata The-

ory and Modal Logic. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Sci-

ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,

UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Trans-
formation. Faculty of Science,

UU. 2009-10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS using
JML. Faculty of Science, Mathematics

and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Pro-
gram Comprehension. Faculty of

Electrical Engineering, Mathematics,

and Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digi-
tal Exchange. Faculty of Mathematics

and Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division

of Mathematics and Computer Sci-

ence, VUA. 2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra
on top of Proof Assistants and mak-
ing Proof Assistants available over the
Web. Faculty of Science, Mathematics

and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of

Science, Mathematics and Computer

Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models.

Faculty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimization

and Their Applications to Medical Im-
age Analysis. Faculty of Mathematics

and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Compu-
tational Complexity of Probabilis-
tic Networks. Faculty of Science,

UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural

Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.

Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-
sation for Crime Analysis and Ge-
nomics. Faculty of Mathematics and

Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Elec-

trical Engineering, Mathematics, and

Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Di-

vision of Mathematics and Computer

Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-

ence, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,

Mathematics and Computer Science,

RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.

Faculty of Mathematics and Natural

Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty

of Science, Mathematics and Com-

puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Founda-
tions, Implementations and Applica-
tions. Faculty of Mathematics and

Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.

Faculty of Sciences, Department of

Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of

Mathematics and Computer Science,

TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-

ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refine-
ment. Faculty of Mathematics and

Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in
Networks of Organizations. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty

of Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of

Mathematics and Natural Sciences,

UL. 2011-08

M.E. Andrés. Quantitative Analy-
sis of Information Leakage in Proba-
bilistic and Nondeterministic Systems.

Faculty of Science, Mathematics and

Computer Science, RU. 2011-09

M. Atif. Formal Modeling and Ver-
ification of Distributed Failure De-
tectors. Faculty of Mathematics and

Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From Com-
putability to Executability – A
process-theoretic view on automata
theory. Faculty of Mathematics and

Computer Science, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic methods
for model comparison and model co-
evolution. Faculty of Mathematics and

Computer Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2011-13

S. Malakuti. Event Composition
Model: Achieving Naturalness in Run-
time Enforcement. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and
Verification. Faculty of Mathematics

and Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow
and Visibility on Triangulated Ter-
rains. Faculty of Mathematics and

Computer Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for
Quality of Service of Component Con-
nectors. Faculty of Mathematics and

Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of States
in OO Verification. Faculty of

Mathematics and Computer Science,

TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Trans-
formations. Faculty of Mathematics

and Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,

Mathematics and Computer Science,

RU. 2011-20

H.J.S. Basten. Ambiguity De-
tection for Programming Language
Grammars. Faculty of Science,

UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of

Mathematics and Natural Sciences,

UL. 2011-22

L.C.L. Kats. Building Blocks for
Language Workbenches. Faculty of

Electrical Engineering, Mathematics,

and Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis
of Real-Time Coordination Patterns.

Faculty of Mathematics and Natural

Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.

Faculty of Mathematics and Natural

Sciences, UL. 2011-25

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of

Mathematics and Computer Science,

TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,

UU. 2012-02

Z. Hemel. Methods and Tech-
niques for the Design and Imple-
mentation of Domain-Specific Lan-
guages. Faculty of Electrical Engi-

neering, Mathematics, and Computer

Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2012-04

